Skip to main content

FYI: What Would Happen If Every Element On The Periodic Table Came Into Contact Simultaneously?



There are two ways to go about testing this, neither of which are practical. One requires the energy of dozens of Large Hadron Colliders. The other could yield a cauldron-full of flaming plutonium. Both, however, would probably create carbon monoxide and a pile of rust and salts rather than a cool Frankenstein element.
If you toss single atoms of each element into a box, they won't form a super-molecule containing one of everything, explains Mark Tuckerman, a theoretical chemist at New York University. Atoms consist of a nucleus of neutrons and protons with a set number of electrons zooming around them. Molecules form when atoms' electron orbitals overlap and effectively hold the atoms together. What you get when you mix all your atoms, Tuckerman says, will be influenced by what's close to what.
Oxygen, for example, is very reactive, and if it is closest to hydrogen, it will make hydroxide. If it is nearest to carbon, it will make carbon monoxide. "That random reactive nature applies to pretty much all elements," Tuckerman says. "You could run this experiment 100 times and get 100 different combinations." Certain elements, such as the noble gases, wouldn't react with anything, so you'd be left with those and a few commonly found two- and three-atom molecules.
Ramming the atoms together at 99.999 percent the speed of light—the top speed of particles in the Large Hadron Collider, at the CERN particlephysics lab near Geneva—might fuse a few nuclei, but it won't make that cool Frankenstein element. More likely, they would meld into a quark-gluon plasma, the theoretical matter that existed right after the universe formed. "But they would last for a fraction of a second before degrading," Tuckerman says. "Plus, you'd need 118 LHCs—one to accelerate each element—to get it done."
The other approach, as explained by John Stanton, the director of the Institute for Theoretical Chemistry at the University of Texas, would be to toss a pulverized chunk of each element or a puff of each gas into a sealed container and see what happens. No one has ever tried this experiment either, but here's how Stanton thinks things would play out: "The oxygen gas would react with lithium or sodium and ignite, raising the temperature in the container to the point that all hell would break loose. Powdered graphite carbon would ignite, too. There are roughly 25 radioactive elements, and they would make your flaming stew a little dangerous. Flaming plutonium is a very bad thing. Inhaling airborne radioactive material can cause rapid death."
Once things calmed down, Stanton says, the result would be as boring as the atoms-only scenario. Carbon and oxygen would yield carbon monoxide and carbon dioxide. Nitrogen gas is very stable, and would remain as is. The noble gases wouldn't react, nor would a few of the metals, like gold and platinum, which are mostly found in their pure forms. The things that do react will form rust and salts. "Thermodynamics wins again," he says. "Things will always achieve equilibrium, and in this case that's a mix of common, stable compounds."

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...