Skip to main content

Scientists accidentally record ball lightning in nature for first time

Chinese researchers have done the seemingly impossible: observed and recorded an instance of ball lightning completely by accident. And it bodes well for a decade-old theory about the nature of the conundrum.




An instance of ball lightning recreated in the lab last year by a team at the US Air Force Academy.
(Credit: Mike Lindsay/US Air Force Academy)
Ball lightning, a phenomenon in which a glowing orb of light persists for seconds after a lightning strike, is one of the most enduring atmospheric mysteries in science. Reported sightings date as far back as ancient Greece; an occurrence of ball lightning is rumored to have killed 18th century scientist Georg Wilhelm Richmann; and recreating it synthetically has been a daunting feat, accomplished by only a few research teams after Nikola Tesla managed to first manifest spherical charges in the lab in 1904.

Since then, little progress has been made toward concrete theories that can explain the strange, near-mystical nature of ball lightning. However, a group of Chinese scientists in 2012 managed, completely by accident, to not only observe and record an instance of it in Qinghai in western China, but to measure the contents of the orb with spectrographs. It marks the first time ever the phenomenon has ever been captured in nature.
While recorded sightings of ball lightning are numerous throughout history and prevalent now on YouTube, the use of spectrographs make this instance a telling achievement, and worthy of publication Friday in the journal Physical Review Letters.
One of the most grounded theories regarding ball lightning, proposed by John Abrahamson and James Dinniss of the University of Canterbury in Cristchurch, New Zealand, is that it's caused by lightning striking soil and turning its chemical contents into a vapor. That vapor is said to then condense into a ball of floating aerosol that glows with the heat of the soil's elements mixing with oxygen. Thanks to the spectrograph readings, this theory, first postulated in 2000, now seems all the more plausible.
The scientists -- Jianyong Cen, Ping Yuan, and Simin Xue -- were observing a thunderstorm when the ball lightning, 5 meters wide and lasting roughly 1.6 seconds, appeared before their eyes. They took their gear, which consisted of camera equipment alongside the slitless spectrographs, back to the lab where the team discovered that the orb contained the same elements found predominately in the soil: silicon, iron, and calcium. "The spectral analysis indicates that the radiation from soil elements is present for the entire lifetime of the BL [ball lightning]," the team's report concluded. The accompanying video recording of the occurrence has not been released at this time.
When reached by NewScientist regarding the findings, Abrahamson said, "Here's an observation which has all the hallmarks of our theory. This is gold dust as far as confirmation goes."
The findings are not entirely conclusive regarding the nature of ball lightning and not evidence that Abrahamson's theory is universally applicable. For instance, it does not explain how ball lightning can pass through indoor environments like people's homes or inside the cockpit of a plane, as was the case in an instance of ball lightning that passed through the cockpit of a C-133A cargo plane traveling to Hawaii from California. Nor does it address what causes the bang many say to be typical in the evaporation of the orbs.
Still, the findings do bring validation to the idea that ball lightning's mysterious nature may, in some cases, be nothing more than an explainable and perfectly natural chemical reaction between the power of a lightning strike and the ground we stand on.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...