Skip to main content

Four-color theorem linked to crystal's magnetic properties

four color theorem
Domain patterns can be understood in terms of color theorems. (a) Image of the domains in a crystal material and (b) the domains colored in accordance with the four-color theorem. (c) Image of the domains in a second crystal material and (d) the domains colored in accordance with a two-step version of the color theorem: domains are either dark or light, as well as one of three colors. These domain patterns, along with their associated coloring schemes, are closely related to the materials’ magnetic properties. Credit: Horibe, et al. ©2014 American Chemical Society
Sometimes mathematical theories have implications that extend far beyond their original purpose. This situation holds true for the four-color theorem, which was originally used by cartographers hundreds of years ago to draw maps. According to the theorem, four colors are sufficient to color different countries on a 2D map so that no two adjacent countries have the same color (excluding intersecting corners). However, today the four-color theorem is less interesting to cartographers than it is to mathematicians due to the complexity of its proof, which was achieved in 1976.
Now, a team of mathematicians, physicists, and chemists from the US, South Korea, and Japan has discovered that the four-color theorem can be used to understand the  and magnetic properties of a complex material. Their paper is published in a recent issue of the Journal of the American Chemical Society.
"Most technological materials such as steels or magnets exhibit complex domain structures, which often determine macroscopic ," Sang-Wook Cheong, Professor at both Rutgers University in Piscataway, New Jersey, and at the Pohang University of Science and Technology in Pohang, South Korea, told Phys.org. "Our paper, for the first time, demonstrated that the configuration of domain structures can be understood in terms of mathematics, specifically color theorems.
The material that the researchers analyzed is iron-intercalated tantalum disulfide (FexTaS2), which belongs to a class of materials called layered transition metal dichalcogenides (TMDs). In this material, when thin layers of the TMD TaS2 are intercalated with Fe ions, the resulting "superstructure" gives rise to new crystal structures that modify the material's physical properties.
The researchers investigated FexTaS2 where the intercalated Fe ions order and form two different superstructures with different in-plane Fe-Fe distances for x=1/4 and x=1/3. Using a transition electron microscope (TEM), the researchers could observe that these different superstructures produce very different crystal domain patterns. For example, the superstructures have different stacking sequences, different domain sizes, and different numbers of domain types (four when x=1/4 and six when x=1/3).
If the different domain types are thought of as countries on a map, they can be colored in accordance to different versions of the color theorem. The Fe1/4TaSsuperstructure makes for a straightforward pattern in which the four domain types can be colored with four colors, corresponding to the traditional four-color theorem. Mathematically speaking, it is 4-colorable.
However, Fe1/3TaSis more complicated. It has the unusual characteristic that six domain boundaries always merge at one point without exception. This pattern is called a "6-valent graph." Furthermore, each domain is always surrounded by an even number of vertices, forming a so-called "even-gon."
As a result of these unique characteristics, Fe1/3TaS2 corresponds to a two-step version of the color theorem. Whereas the Fe1/4TaSsuperstructure is 4-colorable, the Fe1/3TaS2 superstructure is 2 x 3-colorable. That means that the first step involves coloring domains as either dark or light, after which the dark and light domains are colored with one of three colors (such as red, blue, and green). The resulting domain map is colored in such a way that each domain is not adjacent to another domain with the same "first" color nor the same "second" color. For example, a dark red domain is never adjacent to a light red domain or any dark domain.
Of course, there is nothing inherent about crystal domains being colored in a certain way. Instead, the color theorems provide an intuitive way to understand a material's complex domain topology. In turn, the domain topology is closely related to each material's . Specifically, the 4-colorable domains are associated with a strong pinning effect of magnetic domain walls, while the 2 x 3-colorable domains accompany a weak pinning of magnetic domain walls.
In the future, understanding domain wall patterns may enable researchers to control and exploit these macroscopic physical properties of materials by modifying the materials' topologies. This ability could lead to a wide range of applications in electronic, magnetic, and optical devices.
"We will attempt to generalize multi-step color theorems and to explore new domain structures that can be understood with generalized color theorems," Cheong said. "Ultimately our understanding of domains with color theorems will help us to manipulate domain structures to optimize functionalities of materials."
More information: Yoichi Horibe, et al. "Color Theorems, Chiral Domain Topology, and Magnetic Properties of FexTaS2." Journal of the American Chemical Society. DOI: 10.1021/ja5026134

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in