Skip to main content

Scientists Have Invented the Strongest and Lightest Material on Earth

10 times stronger than steel.
For years, researchers have known that carbon, when arranged in a certain way, can be very strong. Case in point: graphene. Graphene, which was heretofore, the strongest material known to man, is made from an extremely thin sheet of carbon atoms arranged in two dimensions.
But there’s one drawback: while notable for its thinness and unique electrical properties, it’s very difficult to create useful, three-dimensional materials out of graphene.

Now, a team of MIT researchers discovered that taking small flakes of graphene and fusing them following a mesh-like structure not only retains the material’s strength, but the graphene also remains porous.
Based on experiments conducted on 3D printed models, researchers have determined that this new material, with its distinct geometry, is actually stronger than graphene – making it 10 times stronger than steel, with only 5 percent of its density.

The discovery of a material that is extremely strong but exceptionally lightweight will have numerous applications.
"The new findings show that the crucial aspect of the new 3-D forms has more to do with their unusual geometrical configuration than with the material itself, which suggests that similar strong, lightweight materials could be made from a variety of materials by creating similar geometric features."
Below you can see a simulation results of compression (top left and i) and tensile (bottom left and ii) tests on 3D graphene: 


"You could either use the real graphene material or use the geometry we discovered with other materials, like polymers or metals," says Markus Buehler, head of MIT’s Department of Civil and Environmental Engineering (CEE), and the McAfee Professor of Engineering.
"You can replace the material itself with anything. The geometry is the dominant factor. It’s something that has the potential to transfer to many things."
Large scale structural projects, such as bridges, can follow the geometry to ensure that the structure is strong and sound.
Construction may prove to be easier, given that the material used will now be significantly lighter. Because of its porous nature, it may also be applied to filtration systems.
This research, says Huajian Gao, a professor of engineering at Brown University, who was not involved in this work, "shows a promising direction of bringing the strength of 2D materials and the power of material architecture design together".
This article was originally published by Futurism. Read the original article.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in