Skip to main content

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium?
No? That’s OK, you’re not alone — scientists hadn’t either. Until recently.
And, hey, guess what — you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published in Scientific Reports,

interstitial interstitium new organ anatomy body neil theise carr-locke benias human microscope liver pathology endoscopy pathologist endoscopist new york university scientific report
Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise told Research Gate. This network of channels is present throughout the body and works as a soft, elastic cushion, protecting the organs from external shocks as the body moves.
Theise suspects the sampling procedure used to make slides, previously the only way for scientists to inspect the tissue in detail, did change the specimens’ shape. “Just taking a bite of tissue from this space allows the fluid in the space to drain and the supporting collagen bundles to collapse like the floors of a collapsing building,” he said.

Researchers could see tiny cracks in the tissue under the microscope, but they thought those cracks happened when the tissue was pulled too hard as it was loaded onto slides. “But these were not artifacts,” Theise said. “These were the remnants of the collapsed spaces. They had been there all the time. But it was only when we could look at living tissue that we could see that.”
But the interstitium isn’t just the “space between cells.” Theise and his collaborators think it should be reclassified as a proper organ because of its unique properties and structure which, Theise said, are “highly specific and dependent on the unique structures and cell types that form it.”
They had been there all the time. But it was only when we could look at living tissue that we could see that.
Better understanding of how our bodies work is never a bad thing. But scientists speculate that these useful properties could also work against us, allowing cancerous cells to spread throughout the body.

Theise’s team found that in patients with some types of malignant cancers, cells could leave the tissues where they originated and leak into these channels, eventually contaminating the lymphatic system. “Once they get in, it’s like they’re on a water slide,” the pathologist told New Scientist. “We have a new window on the mechanism of tumor spread.”
With further analysis of the fluid traveling across the interstitium, the researchers hope they may be able to detect cancer much earlier than they can today.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...