Ever heard of the interstitium? No? That’s OK, you’re not alone — scientists hadn’t either. Until recently. And, hey, guess what — you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published in Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise told Research Gate . This network of channels is present throughout the body and works as a soft, elastic c
Researchers at the University of Pennsylvania have developed a new technique to study the surface of different types of glass. Using this technique, they discovered a surprising property of the top layer of glasses, which could pave the way to developing better glass materials. The research was led by Yue Zhang, a graduate student in the Department of Chemistry in Penn's School of Arts & Sciences, and Zahra Fakhraai, assistant professor of chemistry. Zhang received an APS Padden Award for the research, which recognizes excellence in polymer physics research. The distinction between crystals and liquids is that, while crystals are ordered and solid, liquids are disordered and can move around to fill whatever container they are in. But if one were to cool a liquid sufficiently, it would remain disordered while the motion of its molecules would slow down so much that it would seem solid. This is how amorphous materials such as glasses form. Honey, for instance, i