Skip to main content

Liposomes modified with temperature-responsive polymers are tuned for cellular uptake



Drug delivery is tricky because the therapeutic compound needs to be non-toxic and deliver the correct dosage at the correct time. Some therapeutics are chemically unstable and others do not have the correct solubility profile for cellular uptake. One way that researchers have overcome some of these drawbacks is using stimuli-responsive polymers.


In a research paper in ACS Omega, Jian Wang, Eri Ayano, Yoshie Maitani, and Hideko Kanazawa of Keio University in Japan report the synthesis of the temperature-responsive polymer poly(N-isopropylacrylamide)-co-N,N'-dimethylaminopropylacrylamide (P(NIPAAm-co-DMAPAAm)) and analyzed liposomes modified with this polymer. They found that their polymer undergoes dehydration at around 40oC and that temperature-responsive polymer-modified liposomes had faster cellular uptake and release compared to nonmodified liposomes. 
Researchers have been interested in finding ways to modify liposomes, hollow spheres comprised of phospholipid bilayers, so that they can be a more effective drug delivery system. One way is to modify the surface of liposomes with polymers that respond to certain environmental stimuli, such as temperature.

A key factor in liposomes modified with temperature-dependent polymers is the temperature at which its solubility profile changes, known as the lower critical solution temperature (LCST). Below this temperature, the polymers are soluble in an aqueous solution, while above this temperature they become hydrophobic. This causes the polymer to become dehydrated and to aggregate. This behavior guides the release of a drug within a polymer-modified liposome.
In this study Wang et al. synthesized the temperature-responsive polymer poly(N-isopropylacrylamide)-co-N,N-dimethylaminopropylacrylamide (P(NIPAAm-co-DMAPAAm)). NIPAAm is temperature responsive and DMAPAAm is hydrophilic. They then evaluated the LCST of this polymer by looking at the transition of PNIPAAm from a coil configuration to a globular shape after it is dehydrated using differential scanning calorimetry and transmittance curves. They found that the copolymer's LCST was about 40oC.
They then tested this polymer as a modification to the surface of a liposome, DOTAP/DOPE, and compared this to PEGylated liposomes. After optimizing for stability, they studied colloidal stability by looking at  in a suspension. They found that as temperature increased, the particle size remained constant until about 39oC. Above 40oC, the particle size increased started forming aggregates.
Studies with carboxyfluorescein (CF) encased in the liposome showed that CF was released once aggregates started to form. Specifically, above 37oC 15% of CF was released in thirty minutes. Then, near the LCST, more CF was released and at 42oC 80% of CF had been released.
Wang et al. then studied changes in the fixed aqueous layer thickness (FALT) on the surface of the polymer-modified liposome and compared it to PEGylated liposomes. These results showed that as the temperature increased, the aqueous layer decreased in size only in the temperature-responsive polymer-modified liposomes, but not in the PEGylated liposomes. Importantly, the aqueous layer's thickness decreased at the LCST.
The next step was to see if the temperature-responsive polymer-modified liposomes displayed good cellular uptake. Wang et al. noted that cellular uptake of the polymer-modified liposomes was much more temperature dependent than the PEGylated liposome controls. Fluorescence microscopy showed that CF-entrapped liposomes (rhodamine labeled) in RAW264.7 and HeLa cells released CF in the cells, while cells treated with free CF and liposomes without CF did exhibit the same level of fluorescence within the temperature range. At 40oC, CF fluorescence appeared throughout the cytosol verifying that the polymer-modified liposomes are temperature dependent in terms of cellular uptake and delivery.
The actual mechanism of cellular uptake was analyzed using HeLa cells. The cells were incubated for one hour at 37oC with or without several types of endocytic inhibitors. The cells were then treated with temperature-responsive  modified liposomes at either 4oC or 40oC for 30 minutes. Cellular uptake did not occur at 4oC indicating that uptake is an energy-dependent process. Additionally, based on the results from the inhibitors, cellular uptake occurred via microtubule-dependent transport and clathrin-mediated endocytosis, although additional studies will need to be done to gain further insight into the uptake mechanism.
This research makes headway in the area of  via liposomes modified with stimuli-responsive polymers. The polymers reported here respond to temperatures that are higher than body  but still within physiological range. They likely dehydrate at LCST, leading to good  and controlled drug release.
More information: Jian Wang et al. Tunable Surface Properties of Temperature-Responsive Polymer-Modified Liposomes Induce Faster Cellular Uptake, ACS Omega (2017). DOI: 10.1021/acsomega.6b00342

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...