Skip to main content

Iron dissolved by air pollution may increase ocean potential to trap carbon


Iron particles generated by cities and industry are being dissolved by man-made air pollution and washed into the sea - potentially increasing the amount of greenhouse gases that the world's oceans can absorb, a new study suggests.



Scientists have long believed that acids formed from human-generated pollution and natural emissions dissolve iron in airborne  - increasing the amount of iron to the ocean - but have lacked direct evidence to prove this theory.
Now, iron-rich particles from steel manufacturing and coal burning, collected in the East China Sea, have been found to have a thick sulphate coating containing soluble iron that provides the 'smoking gun' to prove the theory of acid iron dissolution.
Scientists at the University of Birmingham (UK) and Shandong University (China) led an international research partnership with counterparts from universities in US and Japan. The work was funded by the Natural Science Foundation of China and the UK's Natural Environmental Research Council. The team published their findings in Science Advances.
Dr Zongbo Shi, the corresponding author of this work, at the University of Birmingham said: "Air pollution dissolves iron in aerosols, which may help to fertilize the oceans. We know that  seriously damages human health and terrestrial ecosystems but this 'new' source of soluble iron can potentially increase the amount of carbon dioxide stored in the oceans and, thus, inadvertently offset global warming."
Professor Weijun Li, the lead author of this work, at Shandong University added: "The detection of iron sulphate mixed within the sulphate coatings which we analysed provides the 'smoking gun' for acid dissolution because there is no other atmospheric source or process that leads to its formation."
Scientists collected three types of iron-bearing particles from the Yellow Sea, the northern part of the East China Sea located between mainland China and the Korean Peninsula. Sophisticated microscopic instruments were used to look for iron-containing nanoscale particles - specifically locating them from thousands of aerosol particles.
Researchers showed that iron-rich, fly ash, and mineral dust particles had travelled from the Asian continent. Most of the iron-rich and fly ash particles contained a significant amount of sulphate containing soluble iron.
Most atmospheric sulphur dioxide in East Asia is emitted from coal combustion and industry, whilst the bulk of sulphate particles in the Northern Hemisphere are formed from sulphur dioxide caused by human activities.
The research team, thus, confirmed that the iron rich sulphate particles found in the Yellow Sea are formed by contact with man-made . The research shows that the  became acidic after being transported to the Yellow Sea.
"Human activities may have led to an increase of atmospherically soluble iron in the oceans by several times since the Industrial Revolution, which could have a major impact on how effective our oceans are regulating our climate," added Dr Shi.
"Controlling air pollution will bring huge benefits to human welfare but it may reduce the amount of nutrients to the surface ocean and, thus, the ocean carbon uptake rate. More work needs to be done to quantify the impact of anthropogenic soluble iron on ocean ecosystems and climate."

"Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems," Science Advancesadvances.sciencemag.org/content/3/3/e1601749 

Comments

Popular posts from this blog

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...