Skip to main content

There's a Massive, Glowing Blob in the Universe, and a Mystery Source Is Lighting It Up



No one knows what's powering this thing.
Astronomers have discovered a vast, glowing blob of gas in the distant Universe, and they can't figure out what's actually lighting it up.
This glowing nebula is located at the centre of an enormous 'protocluster' of early galaxies some 10 billion light-years from Earth, and is the brightest cosmic object of its kind ever found. And yet, there's no obvious source of its power.
The object, called an 'enormous Lyman-alpha nebula' (ELAN), is not only the brightest object of its kind found in the Universe - it's also one of the biggest, rivalling even the 'Slug Nebula', which stretches 2 million light-years through intergalactic space.
"It's extremely bright, and it's probably larger than the Slug Nebula, but there's nothing else visible except the faint smudge of a galaxy," says one of team, J. Xavier Prochaska, from the University of California, Santa Cruz.
"So it's a terrifically energetic phenomenon without an obvious power source."
Only a handful of ELANs have been discovered so far, and these accumulations of gas are thought to be part of a network of filaments that connect neighbouring galaxies to each other in the vast cosmic web of the Universe.
While other ELANs appear to be powered by the intense radiation given off by quasars, star formation, or supernovae, no such events could be found near this latest example, dubbed the MAMMOTH-1 nebula.
What we do know is the light has the same wavelength that's absorbed and emitted by hydrogen atoms as they cool down - a discharge known as Lyman-alpha radiation - but it's not clear what's been heating them up.
Scientists have suggested that supermassive black holes swallowing matter in galaxies within the central region of the blob could be responsible.
The MAMMOTH-1 nebula was found by a survey called Mapping the Most Massive Overdensities Through Hydrogen (MAMMOTH), which was also responsible for finding the Slug Nebula back in 2014.
The protocluster it's found in is massive, hosting an unusually high concentration of galaxies in an area of about 50 million light-years across - all bound together by gravity.
While the galaxies are now mature, our telescopes are only just seeing them as they would have looked a mere 3 billion years after the Big Bang - the peak of galaxy formation in our Universe.
Several hypotheses have been put forward for how the MAMMOTH-1 nebula at the heart of this great protocluster got so bright, but the most likely ones revolve around radiation or discharges coming from something called an active galactic nucleus (AGN).
AGNs are compact regions at the centre of galaxies that have a much higher than normal luminosity. The team explains that AGNs are powered by a supermassive black hole actively feeding on gas in the centre of a galaxy, and are known for being extremely bright sources of light.
The intense radiation emitted by AGNs ionise the hydrogen gas in the space around it, and this could prompt the ELANs to emit super-bright Lyman-alpha radiation. 
Quasars - the brightest objects in the Universe - are known for being the most luminous AGNs in visible light, except the MAMMOTH-1 nebula is not associated with a quasar, as far as the researchers can tell.
But that doesn't mean there isn't one lurking in the background.
"It has all the hallmarks of an AGN, but we don't see anything in our optical images. I expect there's a quasar that is so obscured by dust that most of its light is hidden," Prochaska says.
The team has its work cut out for it in trying to spot a single quasar some 10 billion light-years from Earth, and until then, the brightest known ELAN will remain a cosmic mystery.
The research has been accepted for publication in the Astrophysical Journal, and you can read it in full at the pre-print website, arXiv.org.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...