Skip to main content

Physicists Have Found a Metal That Conducts Electricity but Not Heat

Defying one of the most fundamental laws of conductors.

Researchers have identified a metal that conducts electricity without conducting heat - an incredibly useful property that defies our current understanding of how conductors work.
The metal contradicts something called the Wiedemann-Franz Law, which basically states that good conductors of electricity will also be proportionally good conductors of heat, which is why things like motors and appliances get so hot when you use them regularly.
But a team in the US has shown that this isn't the case for metallic vanadium dioxide (VO2) - a material that's already well known for its strange ability to switch from a see-through insulator to a conductive metal at the temperature of 67 degrees Celsius (152 degrees Fahrenheit). 
"This was a totally unexpected finding," said lead researcher Junqiao Wu, from Berkeley Lab’s Materials Sciences Division.
"It shows a drastic breakdown of a textbook law that has been known to be robust for conventional conductors. This discovery is of fundamental importance for understanding the basic electronic behaviour of novel conductors."
Not only does this unexpected property change what we know about conductors, it could also be incredibly useful - the metal could one day be used to convert wasted heat from engines and appliances back into electricity, or even create better window coverings that keep buildings cool.
Researchers already know of a handful of other materials that conduct electricity better than heat, but they only display those properties at temperatures hundreds of degrees below zero, which makes them highly impractical for any real-world applications.

Vanadium dioxide, on the other hand, is usually only a conductor at warm temperatures well above room temperature, which means it has the ability to be a lot more practical.

To uncover this bizarre new property, the team looked at the way that electrons move within vanadium dioxide's crystal lattice, as well as how much heat was being generated.
Surprisingly, they found that the thermal conductivity that could be attributed to the electrons in the material was 10 times smaller than that amount predicted by the Wiedemann-Franz Law.
The reason for this appears to be the synchronised way that the electrons move through the material.
"The electrons were moving in unison with each other, much like a fluid, instead of as individual particles like in normal metals," said Wu.
"For electrons, heat is a random motion. Normal metals transport heat efficiently because there are so many different possible microscopic configurations that the individual electrons can jump between."
"In contrast, the coordinated, marching-band-like motion of electrons in vanadium dioxide is detrimental to heat transfer as there are fewer configurations available for the electrons to hop randomly between," he added.
Interestingly, when the researchers mixed the vanadium dioxide with other materials, they could 'tune' the amount of both electricity and heat that it could conduct - which could be incredibly useful for future applications.
For example, when the researchers added the metal tungsten to vanadium dioxide, they lowered the temperature at which the material became metallic, and also made it a better heat conductor.
That means that vanadium dioxide could help dissipate heat from a system, by only conducting heat when it hits a certain temperature. Before that it would be an insulator.
Vanadium dioxide also has the unique ability of being transparent to around 30 degrees Celsius (86 degrees Fahrenheit), but then reflects infrared light above 60 degrees Celsius (140 degrees Fahrenheit) while remaining transparent to visible light.
So that means it could even be used as a window coating that reduces the temperature without the need for air conditioning. 
"This material could be used to help stabilise temperature," said one of the researchers, Fan Yang.
"By tuning its thermal conductivity, the material can efficiently and automatically dissipate heat in the hot summer because it will have high thermal conductivity, but prevent heat loss in the cold winter because of its low thermal conductivity at lower temperatures."
A lot more research needs to be done on this puzzling material before it's commercialised further, but it's pretty exciting that we now know these bizarre properties exist in a material at room temperature.
The research has been published in Science.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...