Skip to main content

Scientists Create a New Kind of Liquid That Can Push Itself Along a Flat Surface

How the... ?



Moving a liquid from point A to point B typically requires either a sloping surface or a pump of some sort to apply pressure.
A new kind of material that is in early development requires neither, instead relying on a squirming skeleton of microscopic fibres to move it in a direction, opening the way for a class of fluid capable of worming itself through a channel.

Researchers from Brandeis University in Massachusetts took a hint from nature and investigated how the biomechanical properties of materials called microtubules could be applied to a mixture to make it move in a single direction around a container.
Anybody who has watched a microscopic amoeba stretch out a gloopy arm to pull itself under the coverslip has seen microtubules in action.
Most complex cells, and even a few bacterial ones, contain a network of microtubule fibres collectively called a cytoskeleton, which is responsible for giving the cell its shape and transporting materials around as they twist, bend, shrink, and stretch.
These fibres are made up of a string of proteins called tubulin, which spirals around on itself to form a cylinder about 25 nanometres across.
In this particular case, the researchers used the microtubules found inside the nerves of a cow's brain.
On their own, the mass of fibres would be about as impressive as wet cobwebs. But the researchers found they could turn a watery mixture of cow microtubules into molecular motors by adding a couple of other ingredients.

The first was kinesin, a protein which naturally attaches to the microtubule and 'walks' along its length in a molecular waddle.
Another component was the energy-carrying molecule adenosine triphosphate(ATP), which generally provides a kick of power whenever it donates one of its three phosphates to proteins such as kinesin.
Putting them together, the researchers found the kinesin connected a pair of microtubule strands like a rung on a ladder, and  when powered by the ATP  walked them in opposite directions.
Each kinesin that walked off the end of a fibre was soon replaced by others connecting other fibres, creating a squirming mess of microscopic worms.
Check out in the clip below how these writhing strings of protein slide against each other with help from the kinesin.

The interesting thing about this swirl of fibres was that it produced small whirlpools in the gel-like mixture.
This turbulence could be harnessed to push the fluid in the same direction simply by choosing the right shape for the container.
The researchers stuck to containers they could map mathematically, such as discs and doughnut shaped 'toroids' like the one in the picture up top, finding by picking the right the dimensions of the container the messy churning of the fibres became a steady current in a single direction.
While this only works in containers with precisely the right dimensions, it does scale up, meaning liquids can be encouraged to flow over a number of metres.
Of course once the ATP runs out of phosphate to hand over to the kinesin, the flow grinds to a halt, which would make it unlikely for large scale transport of liquids.
However, there could easily be a role for self-propelled gels in the future of mechanical engineering.
"From a technology perspective, self-pumping active fluids set the stage for the engineering of soft self-organized machines that directly transform chemical energy into mechanical work," the researchers suggest in a summary of their paper.
Even without an application, this research provides insight into the dynamics of moving fluids inside our own cells.
Perhaps one day we'll be seeing 'wet' robotics powering our cybernetic body parts with self-propelled fluids fed by our body's own reserves of ATP.
This research was published in Science.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...