Skip to main content

Scientists Have Pinpointed the Annoying Genetic Mutation That Turns Us Into Night Owls

"Carriers of the mutation are essentially playing catch-up for their entire lives."

Any night owls reading this will be familiar with the struggle of constantly trying to fit into a morning person's world. And now researchers say they've finally identified the genetic typo that causes this social jetlag.
A new study has revealed that many people who stay up late and struggle to wake up in the morning aren't lazy, their internal clock is simply genetically programmed to run between 2 and 2.5 hours slower than the rest of the population, thanks to a mutation in a body clock gene called CRY1.
"Carriers of the mutation have longer days than the planet gives them, so they are essentially playing catch-up for their entire lives," says lead researcher Alina Patke from The Rockefeller University in New York.
To be clear, we're not just talking about anyone with a smartphone addiction who struggles to fall asleep at night.
True night owls are people who, even in the absence of smartphones and electrical lights, will still fall asleep and wake up late. In contrast, most people who go camping away from city lights will generally time their sleep with the rising and setting of the Sun after a few days.
Night owls who struggle to get enough sleep are often diagnosed at sleep clinics with delayed sleep phase disorder (DSPD), and researchers estimate that around 10 percent of the global population is affected by this condition.
In addition to being more tired, people with DSPD suffer a raft of health issues because their body is constantly trying to play catch-up with the timeline set by the rest of society.
The condition has been linked to anxiety, depression, cardiovascular disease, and diabetes. Not to mention the constant frustration of being traumatised by the alarm clock each morning.
"It's as if these people have perpetual jet lag, moving eastward every day," said one of the researchers, Michael Young. "In the morning, they're not ready for the next day to arrive."
Now the team has shown that it's not just the fact that these people's body clocks are set later than other people's - they actually run 2 to 2.5 hours slower on average than the rest of the population.
Generally, the human body clock is around 24 hours, which means things like digestion, sleep, and cellular repair all fit in nicely to a standard Earth day. But thanks to a mutation in the CRY1 gene, the new research suggests some people simply need more time.
Patke and her colleagues first identified this genetic mutation seven years ago, when a 46-year-old woman came into the sleep clinic after struggling with her late sleep cycle.
Even after being placed in an apartment without windows, TV, or internet for two weeks, the woman still had a strangely long 25-hour circadian rhythm, and her sleep was fragmented.
After studying her genes, the team found that she had a single-letter mutation in the CRY1 gene, which they suspected could be causing the issue.
For a little background - our circadian clock begins each day by building up proteins, called activators, in our cells.
These activators produce their own inhibitors that, over time, stop the activators from working. When all the activators in a cell have been silenced, the inhibitors are no longer produced and gradually the activators surge again, starting the cycle for the next day once more.
The protein produced by the CRY1 gene is one of these inhibitors. But scientists still weren't sure how a single variant in the gene could be having such extreme effects on this woman's body clock.
In this latest study, the researchers took things a step further and studied the CRY1 genes in skin cells from the woman's extended family - showing that they all had the same mutation.
Further investigation revealed that the change causes a big chunk of the resulting protein to be missing, which means the inhibiting CRY1 protein becomes overly active and suppresses the activator for longer than it's supposed to, stretching the daily cycle of the cells out.
The team then backed up their research by analysing the sleep patterns of six Turkish families - 39 of the participants had DSPD and carried the CRY1 'night owl' mutation, and 31 didn't have either.
The carriers all had delayed sleep onset times and some of them had fractured, irregular sleep patterns.
For the 31 people without the genetic mutation, the midpoint of sleep was 4am, but for people with the gene, it was between 6 and 8am - which suggests the mutation pushed the body clock back at least 2 hours.
The good news in all of this is that our body clock, including CRY1, is controlled by external cues such as light exposure, so people should be able to effectively manage DSPD if they stick to a controlled routine.
"An external cycle and good sleep hygiene can help force a slow-running clock to accommodate a 24-hour day," says Patke. "We just have to work harder at it."
"It's not inconceivable that one might develop drugs in the future based on this mechanism," she added.
The researchers also made it clear that not all cases of DSPD are caused by this genetic mutation - often there are other factors involved - but the researchers found it in 1 in 75 individuals of non-Finnish, European ancestry in their research.
"Our variant has an effect on a large fraction of the population," said Young.
More research now needs to be done to replicate these results in a larger sample size, and to get an idea of whether this genetic mutation affects other bodily functions in addition to sleep.
The research has been published in Cell.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...