Skip to main content

Graphene photonics breakthrough promises fast-speed, low-cost communications


Graphene photonics breakthrough promises fast-speed, low-cost communications

Swinburne researchers have developed a high-quality continuous graphene oxide thin film that shows potential for ultrafast telecommunications.
Associate Professor Baohua Jia led a team of researchers from Swinburne's Centre for Micro-Photonics to create a micrometre thin film with record-breaking optical nonlinearity suitable for high performance integrated  used in all-optical communications, biomedicine and photonic computing.
"Such a laser patternable highly nonlinear thin film, about one hundredth of a human hair, has not been achieved by any other material," Professor Jia said.
Graphene is derived from carbon, the fourth most abundant element on earth. It has many useful properties, including light transparency and electrical conductivity, and can be completely recycled.
To create the thin film the researchers spin coated  solution to a glass surface.
Using a laser as a pen they created microstructures on the graphene oxide film to tune the nonlinearity of the material.
"We have developed a new platform in which we can fabricate each optical component with desired nonlinearity," PhD student Xiaorui Zheng said.
"Currently with  or all  you have to fabricate each component individually and try to integrate them together.
"Now we can provide a film, on which everything can be fabricated with laser and then it is automatically integratable."
Current manufacturing methods in semiconductor labs require expensive cleanrooms to fabricate photonic chips. The fabrication and  writing of this photonic material is simple and low cost.
"Using this new method, we have demonstrated the possibility of manufacturing a scalable and cheap material," Professor Jia said.
The research is published in Advanced Materials.
The researchers are now working to fabricate a functional device.
More information: Zheng, X., Jia, B., Chen, X. and Gu, M. (2014)," In Situ Third-Order Non-linear Responses During Laser Reduction of Graphene Oxide Thin Films Towards On-Chip Non-linear Photonic Devices." Adv. Mater., 26: 2699–2703. doi: 10.1002/adma.201304681

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in