Skip to main content

Quantum simulator gives clues about magnetism

Quantum simulator gives clues about magnetism
Pictured is a vacuum system that isolates ultracold atoms from room temperature and pressure. Atoms are suspended in this vacuum with laser beams, and manipulated with magnetic fields. A simple photograph taken with an infrared sensitive camera gives information about the atoms. Credit: Denzil Green / Canadian Institute for Advanced Research

Assembling the puzzles of quantum materials is, in some ways, like dipping a wire hanger into a vat of soapy water, says CIFAR (Canadian Institute for Advanced Research) Fellow Joseph Thywissen (University of Toronto).
Long before mathematical equations could explain the shapes and angles in the soap foams, mathematicians conjectured that soap films naturally found the geometry that minimized surface area, thus solving the problem of minimal surfaces. They could be created simply by blowing soap bubbles.
At the University of Toronto's Ultracold Atoms Lab, Thywissen and his team strive to answer what he calls "soap bubble" questions—deep mysteries of the enigmatic world that simulations can help us solve. Since the electrons within quantum materials, such as superconductors, zoom far too quickly for careful observation, Thywissen's team uses ultracold gases instead, in this way simulating one quantum system with another, more easily studied, quantum system.
"Simulation gives you the answers but not the theory behind them," says Thywissen.
Thywissen's lab has revealed some of these answers in a new paper about the magnetism and diffusion of atoms in ultracold gases, published in the journal Science. The researchers optically trapped a cloud of gas a billion times colder than air in a very low-pressure vacuum.
They oriented the , which behave like microscopic magnets, to make them all point in the same direction in space, then manipulated the spins with an effect that's regularly used in hospitals for MRIs, called a spin echo.
Twisting up the direction into a corkscrew pattern and then untwisting it, they measured the strength of interactions between atoms. They observed that at first the atoms did not interact, but one millisecond later they were strongly interacting and correlated.
This rapid change suggested that something was happening to alter the atoms' magnetism as the process unfolded.
"The Pauli Principle forbids identical ultracold atoms from interacting, so we knew something was scrambling the spins at a microscopic level," Thywissen says.
What was happening, the researchers learned next, was diffusion—the same process that takes place when the smell of perfume fills the air of a room, for example.
"If I open a bottle of perfume in the front of the room, it takes a little while for those particles to diffuse to the back of the room," Thywissen says. "They bump into other particles on the way, but eventually get there. You can imagine that the more particles bump into each other, the slower diffusion occurs."
Cranking up interactions to their maximum allowed level, the Toronto team tried to see how slow diffusion could be. They lowered temperature below a millionth of a degree above absolute zero. You might guess that the speed of diffusion would eventually reach zero, but instead the experiment found a lower limit to diffusion.
"Whereas cars on the freeway need to drive below the speed limit, strongly interacting spins need to diffuse above a quantum speed limit," Thywissen says.
Ultracold atoms are just one of a larger family of strongly interacting materials, that also include superconductors and magnetic materials. Thywissen is a member of the CIFAR Quantum Materials program, which is developing an understanding of these materials' novel properties. Cold  offer a promising way to explore the mystery of how electrons self-organize to exhibit unusual and valuable properties, such as superconductivity. Quantum materials contain mysteries that have challenged physicists for decades.
"Our measurements imply a diffusivity bound whose mathematical simplicity is exciting: it hints at a universal principle about spin transport, waiting to be uncovered," he says.
Thywissen says CIFAR's support helped make this successful experiment possible.
"CIFAR enabled me to assemble a world-class team."
More information: "Transverse Demagnetization Dynamics of a Unitary Fermi Gas,"Science, 2014.
Journal reference: Science  
Provided by Canadian Institute for Advanced Research

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in