Skip to main content

New type of chemical bond discovered

Move over, covalent and ionic bonds, there’s a new chemical bond in town, and it loves to shake things up. 





It’s taken decades to nail down, but researchers in Canada have finally identified a new chemical bond, which they’re calling a ‘vibrational bond’.
This vibrational bond seems to break the law of chemistry that states if you increase the temperature, the rate of reaction will speed up. Back in 1989, a team from the University of British Columbia investigated the reactions of various elements to muonium (Mu) - a strange, hydrogen isotope made up of an antimuon and an electron. They tried chlorine and fluorine with muonium, and as they increased the heat, the reaction time sped up, but when they tried bromine (br), a brownish-red toxic and corrosive liquid, the reaction time sped up as the temperature decreased. The researchers, Amy Nordrum writes for Scientific American, "were flummoxed”. 
Perhaps, thought one of the team, chemist Donald Flemming, when the bromine and muonium made contact, they formed a transitional structure made up of a lightweight atom flanked by two heavier atoms. And the structure was joined not byvan der Waal’s forces - as would usually be expected - but by some kind of temporary ‘vibrational’ bond that had been proposed several years earlier.
"In this scenario, the lightweight muonium atom would move rapidly between two heavy bromine atoms, 'like a Ping Pong ball bouncing between two bowling balls,' Fleming says. The oscillating atom would briefly hold the two bromine atoms together and reduce the overall energy, and therefore speed, of the reaction.”
But back then, the team didn’t have the technology needed to actually see this reaction take place, because it lasts for just a few milliseconds. But now they do, and the team took their investigation to the nuclear accelerator at Rutherford Appleton Laboratory in England. 
With the help of theoretical chemists from the Free University of Berlin and Saitama University in Japan, Flemming’s team watched as the light muonium and heavy bromine formed a temporary bond. “The lightest isotopomer, BrMuBr, with Mu the muonium atom, alone exhibits vibrational bonding in accord with its possible observation in a recent experiment on the Mu + Br2 reaction,” the team reports in the journal Angewandte Chemie International Edition"Accordingly, BrMuBr is stabilised at the saddle point of the potential energy surface due to a net decrease in vibrational zero point energy that overcompensates the increase in potential energy.” 
In other words, the vibration in the bond decreased the total energy of the BrMuBr structure, which means that even when the temperature was increased, there was not enough energy to see an increase in the reaction time. 
While the team only witnessed the vibrational bond occurring in a bromine and muonium reaction, they suspect it can also be found in interactions between lightweight and heavy atoms, where van der Waal’s forces are assumed to be at play.
"The work confirms that vibrational bonds - fleeting though they may be - should be added to the list of known chemical bonds,” says Nordrum at Scientific American.
Sorry, future high school chemistry students, here's another thing you'll probably have to rote learn.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...