Skip to main content

New type of chemical bond discovered

Move over, covalent and ionic bonds, there’s a new chemical bond in town, and it loves to shake things up. 





It’s taken decades to nail down, but researchers in Canada have finally identified a new chemical bond, which they’re calling a ‘vibrational bond’.
This vibrational bond seems to break the law of chemistry that states if you increase the temperature, the rate of reaction will speed up. Back in 1989, a team from the University of British Columbia investigated the reactions of various elements to muonium (Mu) - a strange, hydrogen isotope made up of an antimuon and an electron. They tried chlorine and fluorine with muonium, and as they increased the heat, the reaction time sped up, but when they tried bromine (br), a brownish-red toxic and corrosive liquid, the reaction time sped up as the temperature decreased. The researchers, Amy Nordrum writes for Scientific American, "were flummoxed”. 
Perhaps, thought one of the team, chemist Donald Flemming, when the bromine and muonium made contact, they formed a transitional structure made up of a lightweight atom flanked by two heavier atoms. And the structure was joined not byvan der Waal’s forces - as would usually be expected - but by some kind of temporary ‘vibrational’ bond that had been proposed several years earlier.
"In this scenario, the lightweight muonium atom would move rapidly between two heavy bromine atoms, 'like a Ping Pong ball bouncing between two bowling balls,' Fleming says. The oscillating atom would briefly hold the two bromine atoms together and reduce the overall energy, and therefore speed, of the reaction.”
But back then, the team didn’t have the technology needed to actually see this reaction take place, because it lasts for just a few milliseconds. But now they do, and the team took their investigation to the nuclear accelerator at Rutherford Appleton Laboratory in England. 
With the help of theoretical chemists from the Free University of Berlin and Saitama University in Japan, Flemming’s team watched as the light muonium and heavy bromine formed a temporary bond. “The lightest isotopomer, BrMuBr, with Mu the muonium atom, alone exhibits vibrational bonding in accord with its possible observation in a recent experiment on the Mu + Br2 reaction,” the team reports in the journal Angewandte Chemie International Edition"Accordingly, BrMuBr is stabilised at the saddle point of the potential energy surface due to a net decrease in vibrational zero point energy that overcompensates the increase in potential energy.” 
In other words, the vibration in the bond decreased the total energy of the BrMuBr structure, which means that even when the temperature was increased, there was not enough energy to see an increase in the reaction time. 
While the team only witnessed the vibrational bond occurring in a bromine and muonium reaction, they suspect it can also be found in interactions between lightweight and heavy atoms, where van der Waal’s forces are assumed to be at play.
"The work confirms that vibrational bonds - fleeting though they may be - should be added to the list of known chemical bonds,” says Nordrum at Scientific American.
Sorry, future high school chemistry students, here's another thing you'll probably have to rote learn.

Comments

Popular posts from this blog

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...