Skip to main content

The dark side of cosmology

The dark side of cosmology
The components of our universe. Dark energy comprises 69% of the mass energy density of the universe, dark matter comprises 25%, and “ordinary” atomic matter makes up 5%. Three types of neutrinos make up at least 0.1%, the cosmic background radiation makes up 0.01%, and black holes comprise at least 0.005%. Credit: Science/AAAS
It's a beautiful theory: the standard model of cosmology describes the universe using just six parameters. But it is also strange. The model predicts that dark matter and dark energy – two mysterious entities that have never been detected—make up 95% of the universe, leaving only 5% composed of the ordinary matter so essential to our existence.

In an article in this week's Science, Princeton astrophysicist David Spergel reviews how cosmologists came to be certain that we are surrounded by matter and energy that we cannot see. Observations of galaxies, supernovae, and the 's temperature, among other things, have led researchers to conclude that the universe is mostly uniform and flat, but is expanding due to a puzzling phenomenon called . The rate of expansion is increasing over time, counteracting the attractive force of gravity. This last observation, says Spergel, implies that if you throw a ball upward you will see it start to accelerate away from you.
A number of experiments to detect  and dark energy are underway, and some researchers have already claimed to have found particles of dark matter, although the results are controversial. New findings expected in the coming years from the Large Hadron Collider, the world's most powerful particle accelerator, could provide evidence for a proposed theory, supersymmetry, that could explain the dark particles.
But explaining dark energy, and why the universe is accelerating, is a tougher problem. Over the next decade, powerful telescopes will come online to map the structure of the universe and trace the distribution of matter over the past 10 billion years, providing new insights into the source of cosmic acceleration.
Yet observations alone are probably not enough, according to Spergel. A full understanding will require new ideas in physics, perhaps even a new theory of gravity, possibly including extra dimensions, Spergel writes. "We will likely need a new idea as profound as general relativity to explain these mysteries."
When that happens, our understanding of the dark side of  will no longer accelerate away from us.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...