When physicists assume all the elementary particles are actually one-dimensional loops, or "strings," each of which vibrates at a different frequency, physics gets much easier. String theory allows physicists to reconcile the laws governing particles, called quantum mechanics, with the laws governing space-time, called general relativity, and to unify the four fundamental forces of nature into a single framework. But the problem is, string theory can only work in a universe with 10 or 11 dimensions: three large spatial ones, six or seven compacted spatial ones, and a time dimension. The compacted spatial dimensions — as well as the vibrating strings themselves — are about a billionth of a trillionth of the size of an atomic nucleus. There's no conceivable way to detect anything that small, and so there's no known way to experimentally validate or invalidate string theory
Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...
Comments
Post a Comment