Skip to main content

The fast winds of Venus are getting faster

Since the 1960s, we’ve known the winds of Venus “super-rotate,” or blow faster than the planet rotates. Now a spacecraft has found Venus’ winds are speeding up.
Venus is well known for its curious super-rotating atmosphere, which whips around the planet once every four Earth days. This is in stark contrast to the rotation of the planet itself – the length of the day – which takes a comparatively laborious 243 Earth days. Now ESA’s Venus Express has revealed that the winds on the planet Venus have steadily been getting faster over the last six years.
The spacecraft chronicled what ESA says is the “most detailed record of cloud motion” yet in the atmosphere of Venus in order to reach this conclusion.
Average wind speeds at low latitudes on Venus Photo by: between the equator and 50 degrees north or south
Examples of cloud features identified in Venus Express images and used to monitor wind speeds. These long-term studies were based on tracking the motions of several hundred thousand cloud features, indicated here with arrows and ovals. Image via ESA.
By tracking the movements of distinct cloud features in the cloud tops some 70 kilometers (43 miles) above the planet’s surface over a period of 10 venusian years (6 Earth years), scientists have been able to monitor patterns in the long-term global wind speeds.
When Venus Express arrived at the planet in 2006, average cloud-top wind speeds between latitudes 50 degrees on either side of the equator were clocked at roughly 300 km/h. The results of two separate studies have revealed that these already remarkably rapid winds are becoming even faster, increasing to 400 km/h over the course of the mission.
“This is an enormous increase in the already high wind speeds known in the atmosphere. Such a large variation has never before been observed on Venus, and we do not yet understand why this occurred,” says Igor Khatuntsev from the Space Research Institute in Moscow and lead author of the Russian-led paper to be published in the journal Icarus.
Dr Khatuntsev’s team determined the wind speeds by measuring how cloud features in images moved between frames: over 45 000 features were painstakingly tracked by hand and more than 350 000 further features were tracked automatically using a computer programme.
In a complementary study, a Japanese-led team used their own automated cloud tracking method to derive the cloud motions: their results are to be published in the Journal of Geophysical Research.
On top of this long-term increase in the average wind speed, however, both studies have also revealed regular variations linked to the local time of day and the altitude of the sun above the horizon, and to the rotation period of Venus.
One regular oscillation occurs roughly every 4.8 days near the equator and is thought to be connected to atmospheric waves at lower altitudes.
But the research also unveiled some harder-to-explain curiosities.
“Our analysis of cloud motions at low latitudes in the southern hemisphere showed that over the six years of study the velocity of the winds changed by up 70 km/h over a time scale of 255 Earth days – slightly longer than a year on Venus,” says Toru Kouyama from the Information Technology Research Institute in Ibaraki, Japan.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in