Skip to main content

The Higgs boson does a new trick (probably)

Today the ATLAS experiment at CERN announced the strongest evidence so far that the Higgs gives mass to leptons






Higgs to tau tau


At a seminar at CERN this morning, Aliaksandr Pranko announced an interesting new result on the Higgs boson from the ATLAS experiment.
In brief - we know the Higgs boson is there, and is involved in giving mass to some fundamental particles. Today we saw strong evidence that it gives mass to all of them.
In more detail...
In the Standard Model of physics, the fundamental building blocks of nature are quarks (which live inside hadrons) and leptons (such as the electron, and its heavier siblings, the muon and the tau). These building blocks interact with each other via fundamental forces carried by bosons - the photon carries electromagnetism, the W and Z bosons carry the weak nuclear force, and the gluon carries the strong force.
All those particles (except the photon and the gluon, which are massless) acquire their mass by interacting with the Higgs boson, the discovery of which was announced last year on the fourth of July.
When produced, a Higgs boson decays very quickly, and there are several options open to it in terms of what particles it can produce when it decays. If a particle gets its mass from the Higgs boson, then the Higgs boson will sometimes decay to that particle.
The Higgs discovery was made by observing an excess of events in which pairs of photons were seen, and in which four leptons were seen, probably coming from the Higgs decaying to pairs of Z bosons. You can see the "bumps" (animated!) which betray the existence of a new bosonhere. We also saw strong evidence for Higgs bosons decaying to W bosons.
All of this was compelling evidence that the new boson is responsible for the masses of the W and Z bosons. That was enough to get Englert and Higgs the Nobel prize.
However, in the Standard Model, the Higgs has to give mass to the matter particles as well as the force carrying particles. And while we have indirect evidence that it gives mass to quarks, there was, until today, precious little to show that it gave mass to leptons.
What ATLAS announced today was very strong evidence for the Higgs boson decaying to tau leptons. Tau leptons themselves decay pretty quickly, and produce at least one invisible neutrino when they do so, so spotting them is hard and reconstructing a bump in a distribution is hard. The evidence is the result of a complex analysis which makes use of the fact the we now know the mass of the Higgs. I think the best distribution to visualise it is this one:
Higgs to tau tauMass distribution of tau pairs reconstructed in the ATLAS detector. The fact that the red line (which includes a Higgs decaying to taus) agrees better with the data (black spot) than the other lines is evidence that the Higgs does, indeed, give mass to leptons
... although if you are au fait with boosted decision trees there a more compelling one in the presentation linked from the talk page above (slide 39). The evidence is 4.1 sigma, which is more than the 3 sigma threshold for taking it seriously as evidence, but below the 5 sigma we conventionally require for a discovery. And it is still preliminary - the paper backing it up has not yet been released. But still, it is out there, public and in my opinion pretty solid, so I thought you might like to know.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...