Skip to main content

Better way to turn ocean into fuel

UOW scientists have developed a novel way to turn sea water into hydrogen, for a sustainable and clean fuel source.
Using this method, as little as five litres of sea water per day would produce enough hydrogen to power an average-sized home and an electric car for one day.
The research team at UOW’s Australian Research Council Centre of Excellence for Electromaterials Science (ACES) have developed a light-assisted catalyst that requires less energy input to activate water oxidation, which is the first step in splitting water to produce hydrogen fuel.
A major limitation with current technologies is that the oxidation process needs a higher energy input, which rules out using abundant sea water because it produces poisonous chlorine gas.
The research team, led by Dr Jun Chen and Professor Gerry Swiegers, have produced an artificial chlorophyll on a conductive plastic film that acts as a catalyst to begin splitting water.
The results were recently published in the journal Chemical Science.
Lead author, Dr Jun Chen, said the flexible polymer would mean it could be used in a wider range of applications and it is more easily manufactured than metal semiconductors.
“The system we designed, including the materials, gives us the opportunity to design various devices and applications using sea water as a water-splitting source.
“The flexible nature of the material also provides the possibility to build portable hydrogen-producing devices.”
The development brings UOW’s energy research a step closer to creating an artificial leaf-like device that can efficiently produce hydrogen.
ACES Executive Research Director Professor Gordon Wallace said: “In today’s world the discovery of high performance materials is not enough”.
“This must be coupled with innovative fabrication to provide practical high-performance devices and this work is an excellent example of that,” he said.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...