Skip to main content

Harvard creates brain-to-brain interface, allows humans to control other animals with thoughts alone

Human to rat brain-to-brain interface

Researchers at Harvard University have created the first noninvasive brain-to-brain interface (BBI) between a human… and a rat. Simply by thinking the appropriate thought, the BBI allows the human to control the rat’s tail. This is one of the most important steps towards BBIs that allow for telepathic links between two or more humans — which is a good thing in the case of friends and family, but terrifying if you stop to think about the nefarious possibilities of a fascist dictatorship with mind control tech.
In recent years there have been huge advances in the field of brain-computer interfaces, where your thoughts are detected and “understood” by a sensor attached to a computer, but relatively little work has been done in the opposite direction (computer-brain interfaces). This is because it’s one thing for a computer to work out what a human is thinking (by asking or observing their actions), but another thing entirely to inject new thoughts into a human brain. To put it bluntly, we have almost no idea of how thoughts are encoded by neurons in the brain. For now, the best we can do is create a computer-brain interface that stimulates a region of the brain that’s known to create a certain reaction — such as the specific part of the motor cortex that’s in charge of your fingers. We don’t have the power to move your fingers in a specific way — that would require knowing the brain’s encoding scheme — but we can make them jerk around.
Human BCI to rat focused ultrasound CBI, diagram
Which brings us neatly onto Harvard’s human-mouse brain-to-brain interface. The human wears a run-of-the-mill EEG-based BCI, while the mouse is equipped with a focused ultrasound (FUS) computer-brain interface (CBI). FUS is a relatively new technology that allows the researchers to excite a very specific region of neurons in the rat’s brain using an ultrasound signal. The main advantage of FUS is that, unlike most brain-stimulation techniques, such as DBS, it isn’t invasive. For now it looks like the FUS equipment is fairly bulky, but future versions might be small enough for use in everyday human CBIs. (See: Real-life Avatar: The first mind-controlled robot surrogate.)

With the EEG equipped, the BCI detects whenever the human looks at a specific pattern on a computer screen. The BCI then fires off a command to rat’s CBI, which causes ultrasound to be beamed into the region of the rat’s motor cortex that deals with tail movement. As you can see in the video above, this causes the rat’s tail to move. The researchers report that the human BCI has an accuracy of 94%, and that it generally takes around 1.5 seconds for the entire process — from the human deciding to look at the screen, through to the movement of the rat’s tail. In theory, the human could trigger a rodent tail-wag by simply thinking about it, rather than having to look at a specific pattern — but presumably, for the sake of this experiment, the researchers wanted to focus on the FUS CBI, rather than the BCI.
Moving forward, the researchers now need to work on the transmitting of more complex ideas, such as hunger or sexual arousal, from human to rat. At some point, they’ll also have to put the FUS CBI on a human, to see if thoughts can be transferred in the opposite direction. Finally, we’ll need to combine an EEG and FUS into a single unit, to allow for bidirectional sharing of thoughts and ideas. Human-to-human telepathy is the most obvious use, but what if the same bidirectional technology also allows us to really communicate with animals, such as dogs? There would be huge ethical concerns, of course, especially if a dictatorial tyrant uses the tech to control our thoughts — but the same can be said of almost every futuristic, transhumanist technology.
Research paper: doi:10.1371/journal.pone.0060410 -  ”Non-Invasive Brain-to-Brain Interface (BBI): Establishing Functional Links between Two Brains” (Open-access)

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...