Skip to main content

Voyager 1 Has Left the Solar System



Carrying Earthly greetings on a gold plated phonograph record and still-operational scientific instruments -- including the Low Energy Charged Particle detector designed, built and overseen, in part, by UMD's Space Physics Group -- NASA's Voyager 1 has traveled farther from Earth than any other human-made object. And now, these researchers say, it has begun the first exploration of our galaxy beyond the Sun's influence.
"It's a somewhat controversial view, but we think Voyager has finally left the Solar System, and is truly beginning its travels through the Milky Way," says UMD research scientist Marc Swisdak, lead author of a new paper published online this week in The Astrophysical Journal Letters. Swisdak and fellow plasma physicists James F. Drake, also of the University of Maryland, and Merav Opher of Boston University have constructed a model of the outer edge of the Solar System that fits recent observations, both expected and unexpected.
Their model indicates Voyager 1 actually entered interstellar space a little more than a year ago, a finding directly counter to recent papers by NASA and other scientists suggesting the spacecraft was still in a fuzzily-defined transition zone between the Sun's sphere of influence and the rest of the galaxy.
But why the controversy?
At issue is what the boundary-crossing should look like to Earth-bound observers 11 billion miles (18 billion kilometers) away. The Sun's envelope, known as the heliosphere, is relatively well-understood as the region of space dominated by the magnetic field and charged particles emanating from our star. The heliopause transition zone is both of unknown structure and location. According to conventional wisdom, we'll know we've passed through this mysterious boundary when we stop seeing solar particles and start seeing galactic particles, and we also detect a change in the prevailing direction of the local magnetic field.
NASA scientists recently reported that last summer, after eight years of travel through the outermost layer of the heliosphere, Voyager 1 recorded "multiple crossings of a boundary unlike anything previously observed." Successive dips in, and subsequent recovery of, solar particle counts caught researchers' attention. The dips in solar particle counts corresponded with abrupt increases in galactic electrons and protons. Within a month, solar particle counts disappeared, and only galactic particle counts remained. Yet Voyager 1 observed no change in the direction of the magnetic field.
To explain this unexpected observation, many scientists theorize that Voyager 1 has entered a "heliosheath depletion region," but that the probe is still within the confines of the heliosphere. Swisdak and colleagues, who are not part of the Voyager 1 mission science teams, say there is another explanation.
In previous work, Swisdak and Drake have focused on magnetic reconnection, or the breaking and reconfiguring of close and oppositely-directed magnetic field lines. It's the phenomenon suspected to lurk at the heart of solar flares, coronal mass ejections and many of the sun's other dramatic, high-energy events. The UMD researchers argue that magnetic reconnection is also key to understanding NASA's surprising data.
Though often depicted as a bubble encasing the heliosphere and its contents, the heliopause is not a surface neatly separating "outside" and "inside." In fact, Swisdak, Drake and Opher assert that the heliopause is both porous to certain particles and layered with complex magnetic structure. Here, magnetic reconnection produces a complex set of nested magnetic "islands," self-contained loops which spontaneously arise in a magnetic field due to a fundamental instability. Interstellar plasma can penetrate into the heliosphere along reconnected field lines, and galactic cosmic rays and solar particles mix vigorously.
Most interestingly, drops in solar particle counts and surges in galactic particle counts can occur across "slopes" in the magnetic field, which emanate from reconnection sites, while the magnetic field direction itself remains unchanged. This model explains observed phenomena from last summer, and Swisdak and his colleagues suggest that Voyager 1 actually crossed the heliopause on July 27, 2012.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...