Skip to main content

Was Einstein right?

DaniellaIlling_waves_shutterstock

Nearly a century after the world's greatest physicist, Albert Einstein, first predicted the existence of gravitational waves, a global network of gravitational wave observatories has moved a step closer to detecting the faint radiation that could lead to important new discoveries in our universe.
David Blair is a Winthrop Professor of Physics at The University of Western Australia and Director of the Australian International Gravitational Research Centre at Gingin - 87km north of Perth.  He leads the WA component of a huge international team that has announced a demonstration of a new measurement technique called ‘quantum squeezing' that allows gravitational wave detectors to increase their sensitivity.
"This is the first time the quantum measurement barrier has been broken in a full scale gravitational wave detector," Professor Blair said.  "This is like breaking the sound barrier: some people said it would be impossible.  Breaking that barrier proved that supersonic flight was possible and today we know that it is not a barrier at all.
"This demonstration opens up new possibilities for more and more sensitive gravitational wave detectors."
Gravity waves are ripples in space generated by extreme cosmic events such as colliding stars, black holes, and supernova explosions, which carry vast amounts of energy at the speed of light.
These events are thought to be happening about once a week within the range of new detectors. They should achieve first detection within a few years of beginning operation as their sensitivity is steadily improved.
With the addition of quantum squeezing, physicists will be able to see much more distant sources. However a southern hemisphere detector is needed to be able to pinpoint the location of signals and to reduce interference.
"Already gravitational wave detectors have been proved to be the most sensitive gravitational instruments ever created.  They measure motions measured in attometers...one millionth of one millionth of one millionth of a metre.  The motions they detect are tiny, even compared to the size of a proton," Professor Blair said.
"The new results prove that the physicists are on track to take them to even higher levels of sensitivity.  This will open up the gravitational wave spectrum and allow humanity for the first time to hear the myriad of gravitational sounds that are thought to be constantly rippling through space at the speed of light."
In the research:  "Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, published" in the journal Nature Photonics, squeezed vacuum is injected into the dark port of the beam splitter to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit.
The experiment was carried out on the LIGO detector at Hanford, Washington, known as ‘H1'. The researchers are now developing the techniques for converting squeezed vacuum into frequency-dependent squeezed vacuum for use in Advanced LIGO.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...