Skip to main content

Building better catalysts for splitting water

Building better catalysts for splitting water
A schematic of the x-ray experiment used to determine cluster stability and composition (i.e. oxidation state).
(Phys.org) —The dream of a hydrogen economy—a world run on H2 gas, free from the pollution and politics of fossil fuels—may depend on developing an energy-efficient strategy for splitting water into oxygen and hydrogen. The problem is that water bonds are very stable, requiring hefty energy inputs to break. Scientists are eagerly developing catalysts to lower the energy demands, and thus the cost, of H2 production. Yet, they still struggle with the basics, such as what structural properties make a good water-splitting catalyst.
Using measurements from the Materials Research Collaborative Access Team (MR-CAT) 10-ID-B beamline and the X-ray Science Division 12-ID-C,D beamline at the U.S. Department of Energy Office of Science's Advanced Photon Source (APS), researchers analyzed the stability and composition of three small clusters of palladium—Pd4, Pd6, and Pd17—which are under investigation as potential water-splitting catalysts. They then generated structural models of the catalysts. By combining information about the identity and structure of each  with its catalytic activity, the researchers identified a particular Pd-Pd bond that appears to be essential for catalytic function. This research will allow scientists to design better water-splitting catalysts.
Electrochemical water splitting occurs in two distinct reactions: the hydrogen evolution reaction (HER), and the oxygen evolution reaction (OER). In this study, the researchers, from Argonne National Laboratory, the University of Birmingham (United Kingdom), and Yale University focused on the OER, which is currently the least efficient part of the water-splitting process. Past studies showed that platinum metal can catalyze OER, but those materials require a high load of the expensive metal, usually present as large nanoparticles.
In search of more cost-efficient, more energy efficient, and more active options, the current study focuses on palladium catalysts with sizes of less than a nanometer.
Building better catalysts for splitting water
Possible structures of Pd4O4 (left) and Pd6O6 (right) generated by density functional calculations.
Typically, metallic catalysts are spread somewhat haphazardly onto support surfaces, resulting in unknown distributions of single atoms, clusters, and larger particles. For this study, the researchers isolated size-specific clusters by sending a molecular beam of palladium ions through a mass spectrometer, filtering out all sizes of particles except the clusters of interest: Pd4, Pd6, and Pd17. The clusters were then immediately deposited, separately, on an electrode consisting of a silicon wafer coated with a thin nanodiamond film (first figure).
To test the catalytic prowess of the small palladium clusters, the cathodes were dipped, halfway, into a basic solution, which is the standard medium used in OER. Then, the researchers performed voltammetry, using current as a measure of the turnover rate of the OER reaction. The current generated by the cathode containing Pd4 clusters was no better, and perhaps a little worse, than the electrode alone. However, the Pd6 and Pd17 clusters showed significant activity, with turnover rates that beat those from previous work on Pd metal surfaces and are comparable to those for iridium, the most active metal catalyst for OER.
The next step was to characterize the cluster samples. The researchers brought the same cluster-coated electrodes used in the voltammetry studies to the APS for characterization by grazing incidence x-ray absorption spectroscopy (GIXAS) at beamline 10-ID-B and grazing incidence small angle x-ray scattering (GISAXS) at beamline 12-ID-C,D.
One important observation was that immersed clusters look practically identical to those which were not subject to the water oxidation reaction, suggesting that neither catalysis nor the harsh basic environment changed the structure of the clusters. That stability is key to developing durable catalysts. The measured oxidation states of the Pd4 and Pd6 clusters was used in density functional calculations which determined, for each cluster, the structural configurations (second figure) as well as the free energy for each step of the OER.
Theoretical calculations performed using the high-performance computing cluster at Argonne's Center for Nanoscale Materials suggest that bridging Pd-Pd sites are active for the oxygen evolution reaction (OER) in Pd6O6. Overall, a key descriptor for an efficient OER Pd catalyst is a balancing of binding energy differences with respect to liquid water for each of the important reaction intermediates (O, OH, and OOH). For these Pd clusters, OOH is more strongly bound than the other species, resulting in the observed overpotential. The density functional theory package VASP was used to gain this insight into the mechanism, and cluster structures were obtained using the Birmingham Cluster Genetic Algorithm.
The researchers concluded that the pertinent difference between the clusters was the presence of particular Pd-Pd bonds in the two larger clusters, but not in the smaller cluster. They suspect that this bond may be necessary for OER catalysis, suggesting that catalytic surfaces may be hindered by inactive species. The hope is that, with the knowledge of what constitutes an active species, researchers can focus on making water-splitting catalysts using only the best clusters.
More information: "Size-Dependent Subnanometer Pd Cluster" (Pd4, Pd6, and Pd17) Water Oxidation Electrocatalysis. Gihan Kwon, Glen A. Ferguson, Christopher J. Heard, Eric C. Tyo, Chunrong Yin, Janae DeBartolo, Sönke Seifert, Randall E. Winans, A. Jeremy Kropf, Jeffrey Greeley, Roy L. Johnston, Larry A. Curtiss, Michael J. Pellin, and Stefan Vajda. ACS Nano 2013 7 (7), 5808-5817. DOI: 10.1021/nn400772s

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in