Skip to main content

Hundreds of genetic mutations found in healthy blood of a supercentenarian

Hundreds of genetic mutations found in healthy blood of a supercentenarian
Early hematopoietic stem cells (blue) in a blood vessel of a mouse embryo. Credit: Nancy Speck, University of Pennsylvania School of Medicine
Genetic mutations are commonly studied because of links to diseases such as cancer; however, little is known about mutations occurring in healthy individuals. In a study published online in Genome Research, researchers detected over 400 mutations in healthy blood cells of a 115-year-old woman, suggesting that lesions at these sites are largely harmless over the course of a lifetime.
Our blood is continually replenished by that reside in the bone marrow and divide to generate different types of blood cells, including . Cell division, however, is error-prone, and more frequently dividing cells, including the blood, are more likely to accumulate. Hundreds of mutations have been found in patients with blood cancers such as acute myeloid leukemia (AML), but it is unclear whether healthy white blood cells also harbor mutations.
In this new study, the authors used whole genome sequencing of white blood cells from a supercentenarian woman to determine if, over a long lifetime, mutations accumulate in healthy white blood cells. The scientists identified over 400 mutations in the white blood cells that were not found in her brain, which rarely undergoes cell division after birth. These mutations, known as  because they are not passed on to offspring, appear to be tolerated by the body and do not lead to disease. The mutations reside primarily in non-coding regions of the genome not previously associated with disease, and include sites that are especially mutation-prone such as methylated cytosine DNA bases and solvent-accessible stretches of DNA.
By examining the fraction of the white blood cells containing the , the authors made a major discovery that may hint at the limits of human longevity. "To our great surprise we found that, at the time of her death, the peripheral blood was derived from only two active hematopoietic stem cells (in contrast to an estimated 1,300 simultaneously active stem cells), which were related to each other," said lead author of the study, Dr. Henne Holstege.
The authors also examined the length of the telomeres, or repetitive sequences at the ends of chromosomes that protects them from degradation. After birth, telomeres progressively shorten with each . The white blood cell telomeres were extremely short
More information: Holstege H, Pfeiffer W, Sie D, Hulsman M, Nicholas TJ, Lee CC, Ross T, Lin J, Miller MA, Ylstra B, Meijers-Heijboer H, Brugman MH, Staal FJT, Holstege G, Reinders MJT, Harkins TT, Levy S, Sistermans EA. 2014. Somatic mutations found in the healthy blood compartment of a 115-year-old woman demonstrate oligoclonal hematopoiesis. Genome Res doi: 10.1101/gr.162131.113

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...