Skip to main content

First view of nature-inspired catalyst after ripping hydrogen apart provides insights for better, cheaper fuel cells Read more at: http://phys.org/news/2014-04-view-nature-inspired-catalyst-ripping-hydrogen.html#jCp

Halving hydrogen
Neutron crystallography shows this iron catalyst gripping two hydrogen atoms (red spheres). This arrangement allows an uncommon dihydrogen bond to form between the hydrogen atoms (red dots). Credit: PNNL/Liu et al 2014
(Phys.org) —Like a hungry diner ripping open a dinner roll, a fuel cell catalyst that converts hydrogen into electricity must tear open a hydrogen molecule. Now researchers have captured a view of such a catalyst holding onto the two halves of its hydrogen feast. The view confirms previous hypotheses and provides insight into how to make the catalyst work better for alternative energy uses.
This study is the first time scientists have shown precisely where the  halves end up in the structure of a molecular catalyst that breaks down hydrogen, the team reported online April 22 in Angewandte Chemie International Edition. The design of this catalyst was inspired by the innards of a natural protein called a hydrogenase enzyme.
"The catalyst shows us what likely happens in the natural hydrogenase system," said Morris Bullock of the Department of Energy's Pacific Northwest National Laboratory. "The catalyst is where the action is, but the natural enzyme has a huge protein surrounding the catalytic site. It would be hard to see what we have seen with our catalyst because of the complexity of the protein."
Ironing Out Expense
Hydrogen-powered fuel cells offer an alternative to burning fossil fuels, which generates greenhouse gases. Molecular hydrogen—two hydrogen atoms linked by an energy-rich chemical bond—feeds a fuel cell. Generating electricity through chemical reactions, the fuel cell spits out water and power.
If renewable power is used to store energy in molecular hydrogen, these fuel cells can be carbon-neutral. But fuel cells aren't cheap enough for everyday use.
To make fuel cells less expensive, researchers turned to natural hydrogenase enzymes for inspiration. These enzymes break hydrogen for energy in the same way a fuel cell would. But while conventional  catalysts require expensive platinum, natural enzymes use cheap iron or nickel at their core.
Researchers have been designing catalysts inspired by hydrogenase cores and testing them. In this work, an important step in breaking a  so the bond's energy can be captured as electricity is to break the bond unevenly. Instead of producing two equal hydrogen atoms, this catalyst must produce a positively charged proton and a negatively charged hydride.
The physical shape of a catalyst – along with electrochemical information—can reveal how it does that. So far, scientists have determined the overall structure of catalysts with cheap metals using X-ray crystallography, but hydrogen atoms can't be located accurately using X-rays. Based on chemistry and X-ray methods, researchers have a best guess for the position of hydrogen atoms, but imagination is no substitute for reality.
Bullock, Tianbiao "Leo" Liu and their colleagues at the Center for Molecular Electrocatalysis at PNNL, one of DOE's Energy Frontier Research Centers, collaborated with scientists at the Spallation Neutron Source at Oak Ridge National Laboratory in Tennessee to find the lurking proton and hydride. Using a beam of neutrons like a flashlight allows researchers to pinpoint the nucleus of atoms that form the backbone architecture of their iron-based catalyst.
Bonding Jamboree
To use their iron-based catalyst in neutron crystallography, the team had to modify it chemically so it would react with the hydrogen molecule in just the right way. Neutron crystallography also requires larger crystals as starting material compared to X-ray crystallography.
"We were designing a molecule that represented an intermediate in the chemical reaction, and it required special experimental techniques," Liu said. "It took more than six months to find the right conditions to grow large single crystals suitable for neutron diffraction. And another six months to pinpoint the position of the split H2 molecule."
Crystallizing their catalyst of interest into a nugget almost 40 times the size needed for X-rays, the team succeeded in determining the structure of the iron-based catalyst.
The structure, they found, confirmed theories based on chemical analyses. For example, the barbell-shaped hydrogen molecule snuggles into the catalyst core. On being split, the negatively charged hydride attaches to the iron at the center of the catalyst; meanwhile, the positively charged proton attaches to a nitrogen atom across the catalytic core. The researchers expected this set-up, but no one had accurately characterized it in an actual structure before.
In this form, the hydride and proton form a type of bond uncommonly seen by scientists—a dihydrogen bond. The energy-rich chemical bond between two  in a molecule is called a covalent bond and is very strong. Another bond called a "hydrogen bond" is a weak one formed between a slightly positive hydrogen and another, slightly negative atom.
Hydrogen bonds stabilize the structure of molecules by tacking down chains as they fold over within a molecule or between two independent molecules. Hydrogen bonds are also key to water surface tension, ice's ability to float and even a snowflake's shape.
The dihydrogen bond seen in the structure is much stronger than a single hydrogen bond. Measuring the distance between atoms reveals how tight the bond is. The team found that the dihydrogen bond was much shorter than typical  but longer than typical covalent bonds. In fact, the dihydrogen bond is the shortest of its type so far identified, the researchers report.
This unusually strong dihydrogen bond likely plays into how well the catalyst balances tearing the hydrogen molecule apart and putting it back together. This balance allows the  to work efficiently.
"We're not too far from acceptable with its efficiency," said Bullock. "Now we just want to make it a little more efficient and faster."
More information: Tianbiao Liu, XiaopingWang, Christina Hoffmann, Daniel L. DuBois, and R. Morris Bullock. Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model Investigated by Neutron Diffraction, Angewandte Chemie International Edition, April 22, 2014, DOI: 10.1002/anie.201402090

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in