Skip to main content

When things get glassy, molecules go fractal

When things get glassy, molecules go fractal
The research confirmed that glasses form when their molecules get jammed into fractal 'wells,' as shown on the right, rather than smooth or slightly rough wells (left). Credit: Patrick Charbonneau
Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between liquids and gases, but centuries of scholarship have failed to produce consensus about how to categorize glass.
Now, combining theory and numerical simulations, researchers have resolved an enduring question in the theory of glasses by showing that their energy landscapes are far rougher than previously believed. The findings appear April 24 in the journal Nature Communications.
"There have been beautiful mathematical models, but with sometimes tenuous connection to real, structural glasses. Now we have a model that's much closer to real glasses," said Patrick Charbonneau, one of the co-authors and assistant professor of chemistry and physics at Duke University.
The new model, which shows that  in glassy materials settle into a fractal hierarchy of states, unites mathematics, theory and several formerly disparate properties of glasses.
One thing that sets glasses apart from other phase transitions is a lack of order among their constituent molecules. Their cooled particles become increasingly sluggish until, caged in by their neighbors, the molecules cease to move—but in no predictable arrangement. One way for researchers to visualize this is with an energy landscape, a map of all the possible configurations of the molecules in a system.
Charbonneau said a simple  of glasses can be imagined as a series of ponds or wells. When the water is high (the temperature is warmer), the particles within float around as they please, crossing from pond to pond without problem. But as you begin to lower the water level (by lowering the temperature or increasing the density), the particles become trapped in one of the small ponds. Eventually, as the pond empties, the molecules become jammed into disordered and rigid configurations.
"Jamming is what happens when you take sand and squeeze it," Charbonneau said. "First it's easy to squeeze, and then after a while it gets very hard, and eventually it becomes impossible."
Like the patterns of a lakebed revealed by drought, researchers have long wondered exactly what "shape" lies at the bottom of  energy landscapes, where molecules jam. Previous theories have predicted the bottom of the basins might be smooth or a bit rough.
"At the bottom of these lakes or wells, what you find is variation in which particles have a force contact or bond," Charbonneau said. "So even though you start from a single configuration, as you go to the bottom or compress them, you get different realizations of which pairs of particles are actually in contact."
Charbonneau and his co-authors based in Paris and Rome showed, using computer simulations and numeric computations, that the glass molecules jam based on a fractal regime of wells within wells.
The new description makes sense of several behaviors seen in glasses, like the property known as avalanching, which describes a random rearrangement of molecules that leads to crystallization.
"There are a lot of properties of glasses that are not understood, and this finding has the potential to bring together a wide range of those problems into one coherent picture," said Charbonneau.
Understanding the structure of glasses is more than an intellectual exercise—materials scientists stand to advance from the knowledge, which could lead to better control of the aging of glasses.
More information: "Fractal free energy landscapes in structural glasses," Patrick Charbonneau, Jorge Kurchan, Giorgio Parisi, et al. Nature Communications, April 24, 2014. DOI: 10.1038/ncomms4725

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...