Skip to main content

When things get glassy, molecules go fractal

When things get glassy, molecules go fractal
The research confirmed that glasses form when their molecules get jammed into fractal 'wells,' as shown on the right, rather than smooth or slightly rough wells (left). Credit: Patrick Charbonneau
Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between liquids and gases, but centuries of scholarship have failed to produce consensus about how to categorize glass.
Now, combining theory and numerical simulations, researchers have resolved an enduring question in the theory of glasses by showing that their energy landscapes are far rougher than previously believed. The findings appear April 24 in the journal Nature Communications.
"There have been beautiful mathematical models, but with sometimes tenuous connection to real, structural glasses. Now we have a model that's much closer to real glasses," said Patrick Charbonneau, one of the co-authors and assistant professor of chemistry and physics at Duke University.
The new model, which shows that  in glassy materials settle into a fractal hierarchy of states, unites mathematics, theory and several formerly disparate properties of glasses.
One thing that sets glasses apart from other phase transitions is a lack of order among their constituent molecules. Their cooled particles become increasingly sluggish until, caged in by their neighbors, the molecules cease to move—but in no predictable arrangement. One way for researchers to visualize this is with an energy landscape, a map of all the possible configurations of the molecules in a system.
Charbonneau said a simple  of glasses can be imagined as a series of ponds or wells. When the water is high (the temperature is warmer), the particles within float around as they please, crossing from pond to pond without problem. But as you begin to lower the water level (by lowering the temperature or increasing the density), the particles become trapped in one of the small ponds. Eventually, as the pond empties, the molecules become jammed into disordered and rigid configurations.
"Jamming is what happens when you take sand and squeeze it," Charbonneau said. "First it's easy to squeeze, and then after a while it gets very hard, and eventually it becomes impossible."
Like the patterns of a lakebed revealed by drought, researchers have long wondered exactly what "shape" lies at the bottom of  energy landscapes, where molecules jam. Previous theories have predicted the bottom of the basins might be smooth or a bit rough.
"At the bottom of these lakes or wells, what you find is variation in which particles have a force contact or bond," Charbonneau said. "So even though you start from a single configuration, as you go to the bottom or compress them, you get different realizations of which pairs of particles are actually in contact."
Charbonneau and his co-authors based in Paris and Rome showed, using computer simulations and numeric computations, that the glass molecules jam based on a fractal regime of wells within wells.
The new description makes sense of several behaviors seen in glasses, like the property known as avalanching, which describes a random rearrangement of molecules that leads to crystallization.
"There are a lot of properties of glasses that are not understood, and this finding has the potential to bring together a wide range of those problems into one coherent picture," said Charbonneau.
Understanding the structure of glasses is more than an intellectual exercise—materials scientists stand to advance from the knowledge, which could lead to better control of the aging of glasses.
More information: "Fractal free energy landscapes in structural glasses," Patrick Charbonneau, Jorge Kurchan, Giorgio Parisi, et al. Nature Communications, April 24, 2014. DOI: 10.1038/ncomms4725

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...