Skip to main content

Procrastination and impulsivity genetically linked: Exploring the genetics of 'I'll do it tomorrow'

Procrastination and impulsivity are genetically linked, suggesting that the two traits stem from similar evolutionary origins.
Credit: © Mushy / Fotolia
Procrastination and impulsivity are genetically linked, suggesting that the two traits stem from similar evolutionary origins, according to research published in Psychological Science, a journal of the Association for Psychological Science. The research indicates that the traits are related to our ability to successfully pursue and juggle goals.

"Everyone procrastinates at least sometimes, but we wanted to explore why some people procrastinate more than others and why procrastinators seem more likely to make rash actions and act without thinking," explains psychological scientist and study author Daniel Gustavson of the University of Colorado Boulder. "Answering why that's the case would give us some interesting insights into what procrastination is, why it occurs, and how to minimize it."
From an evolutionary standpoint, impulsivity makes sense: Our ancestors should have been inclined to seek immediate rewards when the next day was uncertain.
Procrastination, on the other hand, may have emerged more recently in human history. In the modern world, we have many distinct goals far in the future that we need to prepare for -- when we're impulsive and easily distracted from those long-term goals, we often procrastinate.
Thinking about the two traits in that context, it seems logical that people who are perpetual procrastinators would also be highly impulsive. Many studies have observed this positive relationship, but it is unclear what cognitive, biological, and environmental influences are responsible for it.
The most effective way to understand why these traits are correlated is to study human twins. Identical twins -- who share 100% of their genes -- tend to show greater similarities in behavior than fraternal twins, who only share 50% of their genes (just like any other siblings). Researchers take advantage of this genetic discrepancy to figure out the relative importance of genetic and environmental influences on particular behaviors, like procrastination and impulsivity.
Gustavson and colleagues had 181 identical-twin pairs and 166 fraternal-twin pairs complete several surveys intended to probe their tendencies toward impulsivity and procrastination, as well as their ability to set and maintain goals.
They found that procrastination is indeed heritable, just like impulsivity. Not only that, there seems to be a complete genetic overlap between procrastination and impulsivity -- that is, there are no genetic influences that are unique to either trait alone.
That finding suggests that, genetically speaking, procrastination is an evolutionary byproduct of impulsivity -- one that likely manifests itself more in the modern world than in the world of our ancestors.
In addition, the link between procrastination and impulsivity also overlapped genetically with the ability to manage goals, lending support to the idea that delaying, making rash decisions, and failing to achieve goals all stem from a shared genetic foundation.
Gustavson and colleagues are now investigating how procrastination and impulsivity are related to higher-level cognitive abilities, such as executive functions, and whether these same genetic influences are related to other aspects of self-regulation in our day-to-day lives.
"Learning more about the underpinnings of procrastination may help develop interventions to prevent it, and help us overcome our ingrained tendencies to get distracted and lose track of work," Gustavson concludes.
Co-authors on this research include Akira Miyake, John Hewitt, and Naomi Friedman of the University of Colorado Boulder.
This research was supported by National Institutes of Health Grants MH063207, HD010333, and DA011015.

Story Source:
The above story is based on materials provided by Association for Psychological ScienceNote: Materials may be edited for content and length.

Journal Reference:
  1. D. E. Gustavson, A. Miyake, J. K. Hewitt, N. P. Friedman. Genetic Relations Among Procrastination, Impulsivity, and Goal-Management Ability: Implications for the Evolutionary Origin of ProcrastinationPsychological Science, 2014; DOI: 10.1177/0956797614526260

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...