Skip to main content

Organic solar cells more efficient with molecules face-to-face

Organic solar cells more efficient with molecules face-to-face
This shows molecules in face-on orientation inside organic solar cell. Credit: NC State University/ Peter Allen
(Phys.org) —New research from North Carolina State University and UNC-Chapel Hill reveals that energy is transferred more efficiently inside of complex, three-dimensional organic solar cells when the donor molecules align face-on, rather than edge-on, relative to the acceptor. This finding may aid in the design and manufacture of more efficient and economically viable organic solar cell technology.
Organic  depends upon the ease with which an exciton – the energy particle created when light is absorbed by the material – can find the interface between the donor and  molecules within the cell. At the interface, the exciton is converted into charges that travel to the electrodes, creating power. While this sounds straightforward enough, the reality is that molecules within the donor and acceptor layers can mix, cluster into domains, or both, leading to variances in domain purity and size which can affect the power conversion process. Moreover, the donor and acceptor molecules have different shapes, and the way they are oriented relative to one another matters. This complexity makes it very difficult to measure the important characteristics of their structure.
NC State physicist Harald Ade, UNC-Chapel Hill chemist Wei You and collaborators from both institutions studied the molecular composition of  in order to determine what aspects of the structures have the most impact on efficiency. In this project the team used advanced soft X-ray techniques to describe the orientation of molecules within the donor and acceptor materials. By manipulating this orientation in different solar cell polymers, they were able to show that a face-on alignment between donor and acceptor was much more efficient in generating power than an edge-on alignment.
"A face-on orientation is thought to allow favorable interactions for charge transfer and inhibit recombination, or charge loss, in ," Ade says, "though precisely what happens on the molecular level is still unclear.
"Donor and acceptor layers don't just lie flat against each other," Ade explains. "There's a lot of mixing going on at the molecular level. Picture a bowl of flat pasta, like fettucine, as the  polymer, and then add 'ground meat,' or a round acceptor molecule, and stir it all together. That's your solar cell. What we want to measure, and what matters in terms of efficiency, is whether the flat part of the fettuccine hugs the round pieces of meat – a face-on orientation – or if the fettuccine is more randomly oriented, or worst case, only the narrow edges of stacked up pasta touch the meat in an edge-on orientation. It's a complicated problem.
"This research gives us a method for measuring this molecular orientation, and will allow us to find out what the effects of orientation are and how  can be fine-tuned or controlled."
The paper appears online April 6 in Nature Photonics.
More information: "The influence of molecular orientation on organic bulk heterojunction solar cells" John R. Tumbleston, Brian A. Collins, Eliot Gann, Wei Ma and Harald Ade, North Carolina State University; Liqiang Yang, Andrew C. Stuart and Wei You, University of North Carolina at Chapel Hill, Published: April 6, 2014, in Nature Photonics
Abstract
In bulk heterojunction organic photovoltaics, electron-donating and electron-accepting materials form a distributed network of heterointerfaces in the photoactive layer, where critical photo-physical processes occur. However, little is known about the structural properties of these interfaces due to their complex three-dimensional arrangement and the lack of techniques to measure local order. Here, we report that molecular orientation relative to donor/acceptor heterojunctions is an important parameter in realizing high-performance fullerene-based, bulk heterojunction solar cells. Using resonant soft X-ray scattering, we characterize the degree of molecular orientation, an order parameter that describes face-on (+1) or edge-on (-1) orientations relative to these heterointerfaces. By manipulating the degree of molecular orientation through the choice of molecular chemistry and the characteristics of the processing solvent, we are able to show the importance of this structural parameter on the performance of bulk heterojunction organic photovoltaic devices featuring the electron-donating polymers PNDT–DTBT, PBnDT–DTBT or PBnDT–TAZ.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...