Skip to main content

E. coli bacteria 'can produce diesel biofuel'


Dish with E coliThe oil that the bacteria produced had a near-identical composition and chemical properties to conventional diesel

Related Stories

A strain of bacteria has been created that can produce fuel, scientists say.
Researchers genetically modified E. colibacteria to convert sugar into an oil that is almost identical to conventional diesel.
If the process could be scaled up, this synthetic fuel could be a viable alternative to the fossil fuel, the team said.
The study is published in the Proceedings of the National Academy of Sciences.
Professor John Love, a synthetic biologist from the University of Exeter, said: "Rather than making a replacement fuel like some biofuels, we have made a substitute fossil fuel.
"The idea is that car manufacturers, consumers and fuel retailers wouldn't even notice the difference - it would just become another part of the fuel production chain."
Fuel factories
There is a push to increase the use of biofuels around the world.
In the European Union, a 10% target for the use of these crop-based fuels in the transport sector has been set for 2020.
But most forms of biodiesel and bioethanol that are currently used are not fully compatible with modern engines. Fractions of the substances (between 5-10%) need to be blended with petroleum before they can be used in most engines.
However, the fuel produced by the modified E. coli bacteria is different.

Start Quote

Our challenge is to increase the yield before we can go into any form of industrial production”
Prof John LoveUniversity of Exeter
Prof Love explained: "What we've done is produced fuels that are exactly the chain length required for the modern engine and exactly the composition that is required.
"They are bio-fossil-fuels if you like."
To create the fuel, the researchers, who were funded by the oil company Shell and the Biotechnology and Biological Sciences Research Council, used a strain of E. coli that usually takes in sugar and then turns it into fat.
Using synthetic biology, the team altered the bacteria's cell mechanisms so that the sugar was converted to synthetic fuel molecules instead.
By altering the bacteria's genes, they were able to transform the bugs into fuel-producing factories. However, the E. coli did not make much of the alkane fuel.
Professor Love said it would take about 100 litres of bacteria to produce a single teaspoon of the fuel.
"Our challenge is to increase the yield before we can go into any form of industrial production," he said.
"We've got a timeframe of about three to five years to do that and see if it is worth going ahead with it."
The team is also looking to see if the bacteria can convert any other products into fuel, such as human or animal waste.
Magic bullet?
Biofuels are considered to be a greener alternative to fossil fuels.
Petrol pumpThe European Union has set a target that 10% of transport fuel should be made from biofuels by 2020.
While petrol and diesel release carbon dioxide that has been stored deep within the Earth, biofuels are said to be carbon neutral because they release as much CO2 into the atmosphere as the plants they are made from absorbed.
However, the energy it takes to grow and process the crops needed for biofuels also should be taken into account, as this adds to their "carbon footprint".
A recent report by Chatham House said biofuels were expensive and worse for the climate than fossil fuels.
According to Geraint Evans, a biofuel consultant at the NNFCC (formerly known as the National Non-Food Crops Centre), these issues would need to be taken into account for a bacteria-produced fuel too.
"It widens the potential sources you can use to make diesel," he said.
"But we still need to consider that this is coming from the land and the sustainability needs to be carefully considered.
It's not a magic bullet - but it is another tool in the toolbox."

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

Scientists solve puzzle of turning graphite into diamond

Stochastic surface walking simulations can explain why graphite turns into hexagonal, not cubic, diamond under pressures of 5-20 gigapascals. Credit: Xie et al. ©2017 American Chemical Society Researchers have finally answered a question that has eluded scientists for years: when exposed to moderately high pressures, why does graphite turn into hexagonal diamond (also called lonsdaleite) and not the more familiar cubic diamond, as predicted by theory? The answer largely comes down to a matter of speed—or in chemistry terms, the reaction kinetics. Using a brand new type of simulation, the researchers identified the lowest-energy pathways in the graphite-to-diamond transition and found that the transition to hexagonal diamond is about 40 times faster than the transition to cubic diamond. Even when cubic diamond does begin to form, a large amount of hexagonal diamond is still mixed in. The researchers, Yao-Ping Xie, Xiao-Jie Zhang, and Zhi-Pan Liu at Fudan University and S...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...