Skip to main content

E. coli bacteria 'can produce diesel biofuel'


Dish with E coliThe oil that the bacteria produced had a near-identical composition and chemical properties to conventional diesel

Related Stories

A strain of bacteria has been created that can produce fuel, scientists say.
Researchers genetically modified E. colibacteria to convert sugar into an oil that is almost identical to conventional diesel.
If the process could be scaled up, this synthetic fuel could be a viable alternative to the fossil fuel, the team said.
The study is published in the Proceedings of the National Academy of Sciences.
Professor John Love, a synthetic biologist from the University of Exeter, said: "Rather than making a replacement fuel like some biofuels, we have made a substitute fossil fuel.
"The idea is that car manufacturers, consumers and fuel retailers wouldn't even notice the difference - it would just become another part of the fuel production chain."
Fuel factories
There is a push to increase the use of biofuels around the world.
In the European Union, a 10% target for the use of these crop-based fuels in the transport sector has been set for 2020.
But most forms of biodiesel and bioethanol that are currently used are not fully compatible with modern engines. Fractions of the substances (between 5-10%) need to be blended with petroleum before they can be used in most engines.
However, the fuel produced by the modified E. coli bacteria is different.

Start Quote

Our challenge is to increase the yield before we can go into any form of industrial production”
Prof John LoveUniversity of Exeter
Prof Love explained: "What we've done is produced fuels that are exactly the chain length required for the modern engine and exactly the composition that is required.
"They are bio-fossil-fuels if you like."
To create the fuel, the researchers, who were funded by the oil company Shell and the Biotechnology and Biological Sciences Research Council, used a strain of E. coli that usually takes in sugar and then turns it into fat.
Using synthetic biology, the team altered the bacteria's cell mechanisms so that the sugar was converted to synthetic fuel molecules instead.
By altering the bacteria's genes, they were able to transform the bugs into fuel-producing factories. However, the E. coli did not make much of the alkane fuel.
Professor Love said it would take about 100 litres of bacteria to produce a single teaspoon of the fuel.
"Our challenge is to increase the yield before we can go into any form of industrial production," he said.
"We've got a timeframe of about three to five years to do that and see if it is worth going ahead with it."
The team is also looking to see if the bacteria can convert any other products into fuel, such as human or animal waste.
Magic bullet?
Biofuels are considered to be a greener alternative to fossil fuels.
Petrol pumpThe European Union has set a target that 10% of transport fuel should be made from biofuels by 2020.
While petrol and diesel release carbon dioxide that has been stored deep within the Earth, biofuels are said to be carbon neutral because they release as much CO2 into the atmosphere as the plants they are made from absorbed.
However, the energy it takes to grow and process the crops needed for biofuels also should be taken into account, as this adds to their "carbon footprint".
A recent report by Chatham House said biofuels were expensive and worse for the climate than fossil fuels.
According to Geraint Evans, a biofuel consultant at the NNFCC (formerly known as the National Non-Food Crops Centre), these issues would need to be taken into account for a bacteria-produced fuel too.
"It widens the potential sources you can use to make diesel," he said.
"But we still need to consider that this is coming from the land and the sustainability needs to be carefully considered.
It's not a magic bullet - but it is another tool in the toolbox."

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...