Skip to main content

Nanosponges In Your Blood Could Soak Up Infections And Poison

Nanosponge Engineers at the University of California, San Diego have invented a "nanosponge" capable of safely removing a broad class of toxins from the bloodstream, including toxins produced by MRSA, E. Coli, poisonous snakes and bees. The nanosponges are made of a biocompatible polymer core wrapped in a natural red blood cell membrane. Zhang Research Lab
A newly invented “nanosponge,” sheathed in armor made of red blood cells, can safely remove a wide range of toxins from the bloodstream. Scientists at the University of California-San Diego inoculated some mice with their nanosponge, and then gave the animals otherwise lethal doses of a toxin--and the mice survived.
This is especially interesting because a nanosponge can work on entire classes of toxins. Most antidotes or treatments against venom, bioweapons or bacteria are targeted to counteract a specific molecular structure, so they can’t be a one-size-fits-all solution; this nanosponge can.


Scientists led by Liangfang Zhang, a nanoengineering professor at UCSD, worked with a class of proteins known as pore-forming toxins, which work just the way they sound: By ripping a hole in a cell membrane. These toxins are found in snake venom, sea anemones, and even bacteria like the dreaded drug-resistant Staph aureus. The proteins come in many different shapes and sizes, but they all work in a similar way.

They designed a nanosponge to soak up any type of pore-forming toxins. It consists of a tiny (85-nanometer) plastic ball wrapped in red blood cell membranes, which basically serve as a decoy and soak up the poison. The plastic ball holds everything together, and keeps the protein away from its real cellular targets. The entire nanosponge is 3,000 times smaller than a full red blood cell. The devices had a half-life of about 40 hours when the team tested them on lab mice, according to a release from UCSD.
They injected mice with 70 times as many toxic proteins as nanosponges, and the sponges still neutralized the poison and caused no visible damage to the animals, the team reports. Next up are clinical trials in animals, to verify that it works safely in a wide range of cases.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...