Skip to main content

Robot inspired by sea turtles uses flippers to navigate tough terrain

Robots inspired by the animal kingdom are already being designed to mimic plenty of creatures, from speedy cheetahs to slithering serpents. Now, researchers are welcoming yet another bio-inspired robot to join the menagerie: a 'bot built to emulate the movements of baby sea turtles.
In a new study published in Bioinspiration and Biomimetics, a team of physicists and engineers out of Georgia Tech and Northwestern University shared progress on "FlipperBot," a robot designed to emulate the strategies employed by young sea turtles in order to traverse both firm terrain and sand with equal ease.
The robot's creation started in nature itself, with a lengthy study on 25 hatchling sea turtles in their natural habitat. Researchers compiled data on the movement patterns of the turtles, namely how they were able to maintain their pace while zipping along sandy ground. That pace is important for the critters: immediately after hatching, the turtles need to make their way across sand and into water — away from eager predators on land.
As it turns out, the turtle's success came down to flexible wrists at the ends of each flipper. "On hard ground, they seemed to lock their wrists to move forward," study co-author Daniel Goldman, an associate professor at Georgia Tech, told The Verge. On sand, the turtles used a different tactic: they dug their limbs into the sand at a specific depth — "but not so much that the sand would flow around the limbs and slow them down," Goldman said — and then bent their wrists to propel themselves.
A WEE ROBOT... CAPABLE OF TRAIPSING THROUGH TRICKY TERRAIN
Following that research, the team translated this flexible wrist principle to a robotic model, dubbed FlipperBot. With a little tweaking, they managed to develop a wee robot — weighing in at less than a pound — capable of traipsing through tricky terrain using the same patterns as its biological peer.
Obviously, the work — which was funded, in part, by the US Army Research Laboratory — could offer new tricks for the development of robots that use flippers to either traverse land or water, or be versatile enough to do both. But that's actually not the top priority. Instead, Goldman and his colleagues hope that robotic models like this one yield a better understanding of animal locomotion. "We're able to study precise movements in robot models that is much harder to do in the field," he noted. The work might also play a role in understanding evolution. "I hope we can use models like this to understand [more] about the flipper-like appendages from the earliest animals to walk on land," Goldman said.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...