Skip to main content

'Junk DNA' regulates cancer gene




Research revealing that genetic sequences once considered as "junk DNA" can regulate cancer genes could lead to the development of new cancer drugs to re-activate tumour suppressor genes.
Researchers led by UNSW's Associate Professor Kevin Morris have discovered a new mechanism,  which re-activate genes that have been switched off.
Many cancers occur when genes that suppress tumours are not functioning properly, allowing the cancer to grow unchecked. The study by the international team is published in the journal Nature Structural and Molecular Biology.
It reveals how a tumour suppressor gene called PTEN, which is shut down in many cancers including skin cancer, is controlled. And it shows how DNA sequences long considered “junk” can influence disease genes.
“We show that there are multiple layers of complexity in the regulation of this PTEN gene, but also that it might be possible to switch it back on in cancer,” Dr Morris says.
The researchers hope this would make tumours more sensitive to chemotherapy and prevent the development of resistance to cancer drugs.
Less than 2 per cent of DNA in the human genome is made up of genes, which carry the blueprint for the production of proteins. Most of the other 98 per cent of the genetic code - known as noncoding DNA – was dismissed in the past as “junk”, because it does not make proteins.
Some short stretches of noncoding DNA are called pseudogenes, because of the similarity of their sequences to known genes.
Dr Morris, of the School of Biotechnology and Biomolecular Sciences in the Faculty of Science, says their research shows that a pseudogene regulates the activity of the PTEN tumour suppressor gene, and the “big deal” is that they found the pseudogene uses two different mechanisms to do this.
“This is the first time bimodal functionality of a pseudogene has been shown,” he says.
He says the exciting prospect is that small molecules could be used to de-activate the pseudogene in cancer. “When you knock out the pseudogene you get activation of the tumour suppressor gene, which would be a good thing.”
Co-author, Per Johnsson, of the Karolinska Institute in Sweden, says: “This means that we might one day be able to reprogram cancer cells to proliferate less, become more normal, and that resistance to chemotherapy can hopefully be avoided.”
Much more research will be needed before this approach is available for clinical use.
Although the work was carried out on just one gene, it could be applicable to many more.
“There is speculation now that there is one pseudogene for each gene,” says Dr Morris.
Last year researchers in the ENCODE public consortium showed that most noncoding DNA is active: it is transcribed into RNA molecules, although mostly of unknown function.
The two mechanisms the pseudogene uses to regulate the PTEN gene are: the pseudogene’s RNA  controls whether PTEN is active and produces any RNA itself; it also controls whether the gene’s protein is made, or not, elsewhere in the cell.
The team includes researchers from the Karolinska Institute and the Scripps Research Institute in the US.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...