Placing wireless smart skin sensors on aging structures could detect potential trouble that could lead to collapse, like in the case of the I-35W bridge in Minneapolis in 2007. Above: a close-up of a strain-testing specimen mounted with a wireless antenna sensor. (Credit: Gary Meek/Georgia Tech)
The sensors require no power and can be implemented on tough yet flexible polymer substrates to identify structural problems at a very early stage. The only electronic component is an inexpensive radio-frequency identification (RFID) chip.
Major bridge failures in recent years have focused attention on the need to monitor America’s bridges and other infrastructure. As thousands of bridges, parking garages, and other structures age, improved methods for detecting deterioration could save lives and prevent economic disruption.
Researchers say the new sensor designs can be inkjet-printed on various substrates, using methods that optimize them for operation at radio frequency. The result would be low-cost, weather-resistant devices that could be affixed by the thousands to various kinds of structures.
“For many engineering structures, one of the most dangerous problems is the initiation of stress concentration and cracking, which is caused by overloading or inadequate design and can lead to collapse—as in the case of the I-35W bridge failure in Minneapolis in 2007,” says Yang Wang, assistant professor in the School of Civil and Environmental Engineering at Georgia Institute of Technology (Georgia Tech).
“Placing a ‘smart skin’ of sensors on structural members, especially on certain high-stress hot spots that have been pinpointed by structural analysis, could provide early notification of potential trouble.”
Antennas as sensors
As reported in the journals IEEE Antennas and Wireless Propagation Letters and the International Journal of Smart and Nano Materials, Wang and colleagues are focusing on wireless sensor designs that are passive, which means they need no power source. Instead, they respond to radio-frequency signals sent from a central reader or hub. One such reader can interrogate multiple sensors, querying them on their status at frequent intervals.
The approach utilizes a small antenna mounted on a substrate and tuned to a specific radio frequency that enables the antenna itself to function as a stress sensor.
As long as the structural member to which the antenna/sensor is affixed remains entirely stable, its frequency stays the same. But even a slight deformation in the structure also deforms the antenna and alters its frequency response. The reader can detect that change at once, initiating a warning months or years before an actual collapse.
“A key benefit of this technology is that it’s completely wireless,” Wang says. “It doesn’t require a battery, and you don’t have to climb around on bridges running long connecting cables.”
The research team has developed a prototype strain/crack sensor that has been successfully tested in the laboratory, Wang says. The simple device consists of a small piece of copper mounted on a polymer substrate, plus a 10-cent 1mm by 1mm RFID chip. The chip is used to distinguish each individual sensing unit from others. The simple sensor architecture allows it to be made at very low cost and to potentially be deployed in large quantities on any bridge.
Inkjet-printed circuits
More sophisticated designs are in the works. A team led by Manos M. Tentzeris of the School of Electrical and Computer Engineering is tackling an approach that produces strain sensors using different applications of inkjet printing technology.
One such design uses a silver-nanoparticle-based ink that is applied to a flexible or semi-flexible substrate, says PhD student Rushi Vyas. The ink lays down a structure that can change properties in response to strain.
A second approach involves the use of inkjet-printed carbon-nanotube-based structures, Vyas says. In this case, the nanotubes themselves produce an altered response when subjected to deformation.
In laboratory testing, the team’s prototype sensors have demonstrated high sensitivity in response to even slight changes in metal structures. The sensors have been able to reliably detect a degree of deformation change as low as tens of microstrains (one microstrain equals 0.0001 percent, or 1 part per million), and they can continuously monitor stress accumulation until the metal develops a severe crack.
One issue still being addressed is the capacity of the passive sensor to respond to a reader. A reader transmits a radio-frequency beam to a sensor, which utilizes that received energy to reflect a signal back to the reader. But this technique can be rather inefficient, Vyas says. A signal from a reader might travel 50 feet, yet the sensor’s response might only travel back 10 feet. One issue is that readers are limited by FCC regulations, which govern how much power can be transmitted to the sensor.
Increasing the power
What’s needed are ways to supply a sensor with a power source that would increase the range of the response signal. Batteries aren’t preferred because they can be undependable and require periodic replacement.
One candidate solution—in addition to solar-energy and vibration-energy harvesting—is scavenged energy, Tentzeris says. Researchers are researching ways to gather power from ambient or electromagnetic energy in the air, such as television, radio, radar or other manmade signals found in Earth’s lower atmosphere.
Scavenging experiments utilizing TV bands have already yielded power amounting to hundreds of microwatts. Multi-band systems are expected to generate one milliwatt or more—enough to operate some small electronic devices such as low-power wireless sensors.
Smart-skin technology may soon help to enable a broad range of applications. These could include not only real-time stress monitoring in bridges, factories and buildings, but also new and extremely lightweight aircraft with self-sensing/self-diagnostic capabilities, and battery-free methods for monitoring structures after major disasters such as earthquakes or hurricanes.
“The wireless strain sensor could prove to be an effective, low-cost and easy-to-scale solution to a very important need,” Tentzeris says. “A simple device—consisting of an antenna, an inexpensive RFID chip and some power-boosting technology—could quietly monitor at-risk structures for many years, and then send back a real-time warning if there’s suddenly a problem.”
Roberto Leon, a former Georgia Tech professor who recently moved to Virginia Tech collaborated on the project, that is supported by the Federal Highway Administration.
Comments
Post a Comment