Skip to main content

Good News For Flexible Electronics: Scientists Invent A Stretchy Gold Conductor

A new nanoparticle material conducts electricity even when stretched to twice its original length.
Gold Conductor
Gold Conductor Researchers embedded a sample of polyurethane with gold nanoparticles. When stretched to extremes the material maintained conductivity. 
A team of scientists at the University of Michigan has discovered that when stretched to their limits, gold nanoparticles embedded into elastic material self-assemble into conductive pathways. The finding has applications for flexible electronics and gentle medical devices.
For their experiment, lead researchers Nicholas Kotov and Yoonseob Kim applied gold nanoparticles to a sample of polyurethane. Observing the effects with an electron microscope, the team slowly began to stretch the material. The nanoparticles responded to the tension by rearranging themselves into chains.
Kotov and Kim tested two versions of the material. The first involved alternating layers of polyurethane and nanoparticles, which can conduct 11,000 Siemens per centimeter (S/cm) at its original size. After being stretched to more than twice its length, the material still managed to conduct at 2,400 S/cm.
The second version of the material was a filtered solution with a natural conductance of 1,800 S/cm. At 5.8 times its original length, it could conduct 35 S/cm.
Nanoparticles Before and After
Nanoparticles Before and After: Left, the nanoparticles in their original dispersed state. Right, the nanoparticles after being stretched to over twice their original length. 

Capitalizing on this characteristic behavior of nanoparticles to organize into chains could lead to advancements in flexible consumer electronics, from cell phones to prosthetic limbs.
Kim and Kotov are particularly interested in the potential application for brain implants. They view their highly resilient conductors as electrodes. Rigid electrodes within the brain create scar tissue and damage cells. Kim and Kotov say their discovery would be as pliable as the surrounding tissue, alleviating effects of diseases such as depression, Alzheimer’s and Parkinson’s.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...