Skip to main content

All Charged Up: Engineers Create A Battery Made Of Wood


Dr. Lianbing Hu heads the group that developed a new battery made with wood at the Energy Research Center at the University of Maryland in College Park.

The big idea behind Joe's Big Idea is to report on interesting inventions and inventors. When I saw the headline "An Environmentally Friendly Battery Made From Wood," on a press release recently, I figured it fit the bill, so went to investigate.
The battery is being developed at the Energy Research Center at the University of Maryland in College Park.
I really wasn't sure what a wood battery would look like. I knew you could make abattery out of a potato and wires, so I figured maybe they were doing something similar with a block of wood.
Wrong. The "wood" is actually microscopic wood fibers that are fashioned into thin sheets. The sheets are then coated with carbon nanotubes and packed into small metal discs.
The wood batteries use sodium ions, rather than the lithium ions that are found in the batteries of cellphones and laptops. In this case, the charged particles move around in the wood fibers, creating an electric current. It turns out wood is a good medium for sodium ions to move around in.
Now, wood is comparatively cheap. So is sodium. Liangbing Hu, head of the battery project, says he's hoping the new batteries can be scaled up so they'll be useful for storing the vast amounts of energy generated by solar arrays or wind farms.
"I think this wood-based storage can play a very important role as a low-cost solution," he says.
Right now the battery is just a prototype. Hu and his colleagues will need to tweak the materials before they have something commercially viable.
There was something else interesting about the new battery: One of the authors on thepaper describing it in Nano Letters was an undergraduate. What's up with that? How does a young college student wind up co-authoring a paper in a major scientific journal?
Hu says Nicholas Weadock was an engineering major who expressed an interest in working in the lab. "In the very beginning he was helping students, my Ph.D. students actually, correct some English grammar," says Hu. A lot of Dr. Hu's doctoral students are from outside the U.S. "During the process ... he asked a lot of interesting, very insightful questions, not only about the language, but about the science behind it."
Weadock says he had originally wanted to work on wind power, but became interested in energy storage technology and wanted to show Hu that he could be a contributor to the lab.
"I came to the group meetings, I made suggestions, and I was ambitious enough to show him that I can do my own project," he says.
Weadock is off to the California Institute of Technology in the fall for graduate school, where he plans to continue work on energy storage. Hu says the positive experience with Weadock has convinced him to recruit more undergraduates to his lab.

Comments

Popular posts from this blog

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...