Skip to main content

Dinosaurs were warm-blooded

Researchers argue that cold-blooded dinosaurs would not have had the required muscular power to prey on other animals and dominate over mammals.
Image: Catmando/Shutterstock
Research has shown new evidence that dinosaurs were warm-blooded like birds and mammals, not cold-blooded like reptiles as commonly believed.
In a paper published in PLoS ONE, Professor Roger Seymour of the University's School of Earth and Environmental Sciences, argues that cold-blooded dinosaurs would not have had the required muscular power to prey on other animals and dominate over mammals as they did throughout the Mesozoic period.
"Much can be learned about dinosaurs from fossils but the question of whether dinosaurs were warm-blooded or cold-blooded is still hotly debated among scientists," says Professor Seymour.
"Some point out that a large saltwater crocodile can achieve a body temperature above 30°C by basking in the sun, and it can maintain the high temperature overnight simply by being large and slow to change temperature.
"They say that large, cold-blooded dinosaurs could have done the same and enjoyed a warm body temperature without the need to generate the heat in their own cells through burning food energy like warm-blooded animals."
In his paper, Professor Seymour asks how much muscular power could be produced by a crocodile-like dinosaur compared to a mammal-like dinosaur of the same size.
Saltwater crocodiles reach over a tonne in weight and, being about 50% muscle, have a reputation for being extremely powerful animals.
But drawing from blood and muscle lactate measurements collected by his collaborators at Monash University, University of California and Wildlife Management International in the Northern Territory, Professor Seymour shows that a 200 kg crocodile can produce only about 14% of the muscular power of a mammal at peak exercise, and this fraction seems to decrease at larger body sizes.
"The results further show that cold-blooded crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in warm-blooded mammals," says Professor Seymour.
"So, despite the impression that saltwater crocodiles are extremely powerful animals, a crocodile-like dinosaur could not compete well against a mammal-like dinosaur of the same size.
"Dinosaurs dominated over mammals in terrestrial ecosystems throughout the Mesozoic. To do that they must have had more muscular power and greater endurance than a crocodile-like physiology would have allowed."
His latest evidence adds to that of earlier work he did on blood flow to leg bones which concluded that the dinosaurs were possibly even more active than mammals.

Comments

Popular posts from this blog

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...