Skip to main content

Nanomaterial can clean water





Monash_MOF.jpg
A new type of metal organic framework can effectively filter toxins from water.
Image: Monash University


New research has demonstrated the potential of a new kind of nanomaterial to filter out environmental toxins in water.


A team of researchers led by Dr Mainak Majumder and Phillip Sheath from Monash University's Department of Mechanical Engineering and Dr Matthew Hill from CSIRO have developed a highly-porous Metal Organic Framework (MOF) that, almost uniquely, is stable and able to filter substances in water.

MOFs are clusters of metal atoms connected by organic molecules and known for their exceptional abilities to store or separate gases such as carbon dioxide. This is one of the first studies to demonstrate their separation applications in an aqueous environment.

Dr Majumder said the uniform structure of MOFs made them very efficient filters.

"These are crystalline materials with a difference - they have pores that are all exactly the same size. So while one substance can fit in the pores and be captured, another, just one tenth of a nanometre bigger, can’t fit," Dr Majumder said.

"As a result you can detect and capture substances that are present in low concentrations, or in a mixture with other materials."

The researchers demonstrated the filtering ability of the new MOF by sieving paraquat - a herbicide that has been linked with the onset of Parkinson's Disease. The MOF was a very precise filter, removing paraquat, but leaving other contaminants.

"Because MOFs are flexible, we found that their structure changed when they absorbed the paraquat. This means that our MOF could form the basis of a device for quickly and easily testing for the contaminant in water," Dr Hill said.

"Due to its very precise filtering properties, this testing application could deliver very accurate contamination readings in the field."

Only one contaminant, paraquat, was tested in this study; however, the MOF could be altered to filter out other contaminants.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...