Skip to main content

Caveman ethics? The rights and wrongs of cloning Neanderthals

Wikimedia_Neanderthal-2D_Model
Researchers have decoded the whole mitochondria DNA of five Neanderthal men and now believe that if they had willing surrogates, they could clone the species. But would it be ethical?
Image: Wikimedia
It now appears that the scientist who seemed to be advocating that we clone Neanderthals was suggesting only that “we need to start talking about it.” Ethics is an essential part of such a conversation: assuming we can overcome the enormous technical challenges that currently bedevil any such cloning initiative, should we do it?
Big science is expensive, and any money spent on it is money not spent elsewhere. The (perhaps many) millions of dollars required by this kind of research could be used for hospital beds, poverty alleviation or medical research. Of course, the money may come from private sources, rather than government, and private individuals may have the right to use their money in this way.
But it’s one thing to say that they have the right to spend their money in this way and quite another to say that it’s ethical to do so (there are many things we have the right to do that are nevertheless morally wrong: we can lie to one another, we can buy artworks and burn them, we can express racist or misogynist views, and so on). The very fact that research involves the expenditure of scarce resources, and therefore opportunity costs (the alternative uses we might have made of the money), means that it must have some positive value to be ethical.
What kind of positive value might justify it? Obviously, research is often justified by the benefits it promises to bring us: medical research has played an important role in extending the length and the quality of lives of human beings (and animals, too). And while it’s much harder to put a value on basic research – curiosity-driven research, it’s very plausible to think that basic research is valuable.
First, it plays an indirect role in bringing about benefits to humans and other animals: everything in science is connected, however distantly, to everything else, and deepening our knowledge about anything might enable us to develop better therapies in the long run. Second, knowledge seems to be valuable in itself: knowing more about the universe and our place in it is sufficiently important to justify expending some resources on science (and on the humanities, too).
Will this research bring us practical benefits or deepen our knowledge? Cloning is now used in agriculture to that extent it has practical benefits (assuming – perhaps bravely – that this kind of agriculture is itself justified). It may be that solving the enormous technical challenges involved in cloning Neanderthals would contribute, in some way, to these practical applications.
More certainly, the research would produce knowledge that we currently lack. Right now, we know how to clone only in one way: by somatic cell nuclear transfer. Essentially, the process involves transferring the nucleus of a cell from one organism into the egg cell of a host organism. This gives us a cell with DNA the great majority of which comes from the animal to be cloned (only the mitochondrial DNA of the egg comes from the host). When the technique is successful, we get an animal that is genetically very similar to the original animal. Because we lack a preserved Neanderthal somatic cell, however, we can’t use this method. Instead, the research proposes synthesising a DNA cell using the near-complete Neanderthal genome. No doubt, the attempt to do so would add considerably to our knowledge of genetics.
Suppose we succeeded in cloning a Neanderthal. Then, it seems, we would gain knowledge in another way: we could observe the growing child and his or her behaviour. However, though we would certainly learn something in this way, it would be rash to think that we were learning much about Neanderthals through observing the clone. We don’t know how much of Neanderthal behaviour is dependent on environmental input, of the right kind and at the right time.
Human beings are innately disposed to learn language, but an alien who cloned a human being might not learn that fact unless they provided the right kind of environmental input (language develops given the right kind of exposure in childhood). Language use is, of course, central to the kind of social animals we are; so an alien who cloned a human being might learn relatively little about us (in fact, they may get a highly misleading picture of what human beings are like).
We run an analogous risk with the Neanderthal: we might get an extremely misleading picture of Neanderthal behaviour from a child brought up in a modern environment (even were we to try to replicate the environment in which his or her ancestors might have lived: we simply don’t know enough to get close).
The idea that we might try to replicate the environment in which Neanderthals lived brings us to the central issue concerning the ethics of this research: the welfare of the cloned individual. Neanderthals were intelligent: they made tools and may have had language; they certainly had a complex culture.
Unlike most other animals, the cloned Neanderthal would have a grasp on how it is being treated. It would either have to be brought up in ignorance of its place in the world, or its unique position – the last representative of an extinct species, alone on the Earth – would have to be made clear to it.
Either option seems likely to cause it suffering; in the first place though the kind of isolation from others that ignorance would require; in the second case through a kind of existential loneliness. To have a flourishing life, it – like us – probably requires some kind of community in which it can take its place. We are unlikely to be able to offer the clone such a community.
Further, being a constant object of scientific curiosity is not likely to lead to a life of flourishing. At worst, it might feel like it’s the main attraction in a freak show.
Like other attempts at cloning, moreover, it’s highly unlikely we would not succeed at first try. Rather, it is likely to require many attempts. Embryos that are not viable would die early; some people would be troubled by that fact (though I am not). Even if we succeed in bringing an embryo to term, there’s a high likelihood that the infant would die soon afterwards or have significant health problems: it might well take many births to produce a relatively healthy individual. Sickness and death are major costs, borne by the cloned individual.
Finally, spare a thought for the woman who bears a cloned Neanderthal to term. She will undergo an invasive procedure, endure a pregnancy which may involve significant complications, and be herself the main attraction in a freak show. She may develop an attachment to the child, but is unlikely to ever have a normal relationship with it. Of course, any woman who participated in such research would be a volunteer, and women have the right to do what they like with their own bodies. Nevertheless, I suspect that she would herself bear significant costs.
I doubt that cloning a Neanderthal is possible anytime soon. The technical hurdles are too great. The knowledge we might gain through overcoming these hurdles, were we to succeed, would be of great intrinsic interest. But I doubt that they can justify the research, in the light of the costs that would have to be borne, especially by the cloned individual. 

Comments

Popular posts from this blog

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

20,000 megawatts under the sea: Oceanic steam engines

Jules Verne mused about getting energy from heat in the ocean  (Image: Marc Pagani/Getty) Jules Verne imagined this limitless power source in Victorian times – now 21st-century engineers say heat trapped in the oceans could provide electricity for the world IF ANY energy source is worthy of the name "steampunk", it is surely ocean thermal energy conversion. Victorian-era science fiction? Check: Jules Verne mused about its potential in  Twenty Thousand Leagues Under the Sea  in 1870. Mechanical, vaguely 19th-century technology? Check. Compelling candidate for renewable energy in a post-apocalyptic future? Tick that box as well. Claims for it have certainly been grandiose. In theory, ocean thermal energy conversion (OTEC) could provide  4000 times the world's energy needs in any given year , with neither pollution nor greenhouse gases to show for it. In the real world, however, it has long been written off as impractical. This year, a surprising number of pro...