Skip to main content

New super material developed

pling_material_Shutterstock
The new composite material harnesses the mechanical properties of nanowires, is twice as strong as high strength steel and is extremely elastic. It may be used to create medical applications, such as implants.
Image: Pling/Shutterstock
In a world first, a team of researchers from Australia, China and the US has created a super strong metallic composite by harnessing the extraordinary mechanical properties of nanowires.
Co-author and Head of the School of Mechanical and Chemical Engineering at The University of Western Australia, Winthrop Professor Yinong Liu, said the work has effectively overcome a challenge that has frustrated the world's top scientists and engineers for more than three decades, nicknamed the "valley of death" in nanocomposite design.
"We know that nanowires exhibit extraordinary mechanical properties, in particular ultrahigh strengths in the order of several gigapascal, approaching the theoretical limits.  With the fast development of our capability to produce more in variety, more in quantity and better in shape and size of nanowires, the chance of creating bulk engineering composite materials reinforced by these nanowires has become high," Professor Liu said.  However, all the attempts to date have failed to realise the extraordinary properties of the nanowires in bulk materials.
Professor Liu says the problem is with the matrix: "In a normal metal matrix-nanowire composite, when we pull the composite to a very high stress, the nanowires will experience a large elastic deformation of several per cent.  That is OK for the nanowires, but the normal metals that form the matrix cannot.  They can stretch elastically to no more than 1 per cent.  Beyond that, the matrix deforms plastically," he said.
Plastic deformation damages the crystal structure at the interface between the nanowires and the matrix.  In this regard, the properties of the composite are limited by the properties of the ordinary matrix, and not determined by the extraordinary properties of the nanowires.
"The trick is with the NiTi matrix," Professor Liu said.  "NiTi is a shape memory alloy, a fancy name but not totally new. It is no stronger than other common metals but it has one special property that is its martensitic transformation.  The transformation can produce a deformation compatible to the elastic deformation of the nanowires without plastic damage to the structure of the composite.  This effectively gives the nanowires a chance to do their job, that is, to bear the high load and to be super strong.  With this we have crossed the ‘valley of death'!" Professor Liu said.
Using this idea, the researchers have created composite materials that are twice as strong as high strength steels, that have elastic strain limits up to six per cent - which is 5-10 times greater than the elastic strains of the best spring steels currently available - and a Young's modulus of ~30 GPa, which is unmatched by any engineering materials so far.
The breakthrough opens the door for a range of new and innovative applications.  The very low Young's modulus matches that of human bone, making it a much better material for medical applications as implants, for example.  The ability to produce and maintain extremely large elastic strains also provides an unprecedented opportunity for "elastic strain engineering", which could lead to improvements in many functional properties of solid materials, such as electronic, optoelectronic, piezoelectric, piezomagnetic, photocatalytic and chemical sensing properties.
A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus and High Strength has been published in the journal Science.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in