Skip to main content

MAGNETIC LEVITATED TRAIN

The principal of a Magnet train is that floats on a magnetic field and is propelled by a linear induction motor. They follow guidance tracks with magnets. These trains are often refered to as Magnetically Levitated trains which is abbreviated to MagLev. Although maglevs don't use steel wheel on steel rail usually associated with trains, the dictionary definition of a train is a long line of vehicles travelling in the same direction - it is a train.

HOW IT WORKS:
A maglev train floats about 10mm above the guidway on a magnetic field. It is propelled by the guidway itself rather than an onboard engine by changing magnetic fields (see right). Once the train is pulled into the next section the magnetism switches so that the train is pulled on again. The Electro-magnets run the length of the guideway.

ADVANTAGES:
Well it sounds high-tech, a floating train, they do offer certain benefits over conventional steel rail on steel wheel railways. The primary advantage is maintanance. Because the train floats along there is no contact with the ground and therefore no need for any moving parts. As a result there are no components that would wear out. This means in theory trains and track would need no maintanence at all. The second advantage is that because maglev trains float, there is no friction. Note that there will still be air resistance. A third advantage is less noise, because there are no wheels running along there is no wheel noise. However noise due to air disturbance still occurs. The final advantage is speed, as a result of the three previous listed it is more viable for maglev trains to travel extremely fast, ie 500km/h or 300mph. Although this is possible with conventional rail it is not economically viable. Another advantage is that the guidway can be made a lot thicker in places, eg after stations and going uphill, which would mean a maglev could get up to 300km/h (186mph) in only 5km where currently takes 18km. Also greater gradients would be applicablePhoto: ___________MAGNETIC LEVITATED TRAIN______________
The principal of a Magnet train is that floats on a magnetic field and is propelled by a linear induction motor. They follow guidance tracks with magnets. These trains are often refered to as Magnetically Levitated trains which is abbreviated to MagLev. Although maglevs don't use steel wheel on steel rail usually associated with trains, the dictionary definition of a train is a long line of vehicles travelling in the same direction - it is a train.

HOW IT WORKS:
A maglev train floats about 10mm above the guidway on a magnetic field. It is propelled by the guidway itself rather than an onboard engine by changing magnetic fields (see right). Once the train is pulled into the next section the magnetism switches so that the train is pulled on again. The Electro-magnets run the length of the guideway.

ADVANTAGES:
Well it sounds high-tech, a floating train, they do offer certain benefits over conventional steel rail on steel wheel railways. The primary advantage is maintanance. Because the train floats along there is no contact with the ground and therefore no need for any moving parts. As a result there are no components that would wear out. This means in theory trains and track would need no maintanence at all. The second advantage is that because maglev trains float, there is no friction. Note that there will still be air resistance. A third advantage is less noise, because there are no wheels running along there is no wheel noise. However noise due to air disturbance still occurs. The final advantage is speed, as a result of the three previous listed it is more viable for maglev trains to travel extremely fast, ie 500km/h or 300mph. Although this is possible with conventional rail it is not economically viable. Another advantage is that the guidway can be made a lot thicker in places, eg after stations and going uphill, which would mean a maglev could get up to 300km/h (186mph) in only 5km where currently takes 18km. Also greater gradients would be applicable.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...