Skip to main content

Einstein's Lost Theory Uncovered

A manuscript that lay unnoticed by scientists for decades has revealed that Albert Einstein once dabbled with an alternative to the Big Bang theory, proposing instead that the Universe expanded steadily and eternally. The recently uncovered work, written in 1931, is reminiscent of a theory championed by British astrophysicist Fred Hoyle nearly 20 years later. Einstein soon abandoned the idea, but the manuscript reveals his continued hesitance to accept that the Universe was created during a single explosive event.
The Big Bang theory had found observational support in the 1920s, when US astronomer Edwin Hubble and others discovered that distant galaxies are moving away and that space itself is expanding. This seemed to imply that, in the past, the contents of the observable Universe had been a very dense and hot ‘primordial broth’.
But, from the late 1940s, Hoyle argued that space could be expanding eternally and keeping a roughly constant density. It could do this by continually adding new matter, with elementary particles spontaneously popping up from space, Hoyle said. Particles would then coalesce to form galaxies and stars, and these would appear at just the right rate to take up the extra room created by the expansion of space. Hoyle’s Universe was always infinite, so its size did not change as it expanded. It was in a ‘steady state’.
The newly uncovered document shows that Einstein had described essentially the same idea much earlier. “For the density to remain constant new particles of matter must be continually formed,” he writes. The manuscript is thought to have been produced during a trip to California in 1931 — in part because it was written on American note paper.
It had been stored in plain sight at the Albert Einstein Archives in Jerusalem — and is freely available to view on its website — but had been mistakenly classified as a first draft of another Einstein paper. Cormac O’Raifeartaigh, a physicist at the Waterford Institute of Technology in Ireland, says that he “almost fell out of his chair” when he realized what the manuscript was about. He and his collaborators have posted their findings, together with an English translation of Einstein’s original German manuscript, on the arXiv preprint server (C. O’Raifeartaigh et al. Preprint athttp://arxiv.org/abs/1402.0132; 2014) and have submitted their paper to the European Physical Journal.
“This finding confirms that Hoyle was not a crank,” says study co-author Simon Mitton, a science historian at the University of Cambridge, UK, who wrote the 2005 biography Fred Hoyle: A Life in Science. The mere fact that Einstein had toyed with a steady-state model could have lent Hoyle more credibility as he engaged the physics community in a debate on the subject. “If only Hoyle had known, he would certainly have used it to punch his opponents,” O’Raifeartaigh says.
Although Hoyle’s model was eventually ruled out by astronomical observations, it was at least mathematically consistent, tweaking the equations of Einstein’s general theory of relativity to provide a possible mechanism for the spontaneous generation of matter. Einstein’s unpublished manuscript suggests that, at first, he believed that such a mechanism could arise from his original theory without modification. But then he realized that he had made a mistake in his calculations, O’Raifeartaigh and his team suggest. When he corrected it — crossing out a number with a pen of a different color — he probably decided that the idea would not work and set it aside.
The manuscript was probably “a rough draft commenced with excitement over a neat idea and soon abandoned as the author realized he was fooling himself”, says cosmologist James Peebles of Princeton University in New Jersey. There seems to be no record of Einstein ever mentioning these calculations again.
But the fact that Einstein experimented with the steady-state concept demonstrates his continued resistance to the idea of a Big Bang, which he at first found “abominable”, even though other theoreticians had shown it to be a natural consequence of his general theory of relativity. (Other leading researchers, such as the eminent Cambridge astronomer Arthur Eddington, were also suspicious of the Big Bang theory, because it suggested a mystical moment of creation.) When astronomers found evidence for cosmic expansion, Einstein had to abandon his bias towards a static Universe, and a steady-state Universe was the next best thing, O’Raifeartaigh and his collaborators say.
Helge Kragh, a science historian at Aarhus University in Denmark, agrees. “What the manuscript shows is that although by then he accepted the expansion of space, [Einstein] was unhappy with a Universe changing in time,” he says.
This article is reproduced with permission from the magazine Nature. The article wasfirst published on February 24, 2014.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in