Skip to main content

The role of synthetic biology in conversion of natural gas into clean fuel

(Phys.org) —Rice University synthetic biologist Ramon Gonzalez sees a future – a near future, in fact – in which Americans get enough clean transportation fuel from natural gas to help make the nation energy independent.

As a program director with the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E), he's in a position to help make it happen.
In an article in this week's Science magazine, Gonzalez, an associate professor of chemical and biomolecular engineering, discusses his vision for the development of revolutionary bioconversion technologies for the production of liquid transportation fuels from natural gas. This vision is the basis for a program, Reducing Emissions Using Methanotrophic Organisms for Transportation Energy (REMOTE), developed by Gonzalez and his team at ARPA-E. The program currently supports 15 teams with a budget of approximately $35 million.
He and co-author Robert Conrado, a former senior fellow at ARPA-E, detailed the barriers that must be overcome for the United States to turn the methane-rich natural gas it produces in great abundance into fuel that remains liquid at room temperature – basically, a clean-burning, low-cost gasoline equivalent.
Gonzalez is in the first year of the agency's three-year commitment to create natural gas bioconversion technologies through REMOTE. "Our goal is to come up with things that are not on anyone's radar, completely new approaches that are transformational in nature," he said. "Natural gas is one of the most-abundant resources in the world, but until now the U.S. had invested very little in natural gas bioconversion research."
The United States produces more natural gas than any other country, but converting it to  without throwing away most of the  it contains is expensive, Gonzalez said. "The gas-to-liquids (GTL) technologies that exist today can only support technologically complex, multistep processes that need to operate at large scale, which means multimillion-dollar investments in each facility. It's probably economically viable today because natural gas is so cheap, but it's bad in terms of energy efficiency and emissions."
While bioconversion offers a potential solution to the large-scale, capital-intensive nature of the GTL approach, implementation of today's bioconversion technologies would lead to "wasting half of the energy and one-third of the carbon in methane during conversion to a liquid fuel and hence a huge carbon footprint," he said. "And when natural gas goes up in price, it won't be economically viable anymore."

REMOTE's goal is to solve both problems by getting the most energy out of natural gas with the least energy input. The key, Gonzalez said, is to engineer enzymes that efficiently "activate" carbon-hydrogen bonds in methane, the first step toward conversion. That involves the manipulation of microbial cells that alter materials at the molecular level.
"People have been trying really hard to do it for decades," he said. "I think it's going to happen within the life of the program – that is, within the first three years."
Next, he said, researchers will need an efficient way to convert activated, intermediate methane into liquid fuel in concert with the development of high-productivity bioreactors.
Gonzalez remains in charge of his Metabolic Engineering and Synthetic and Systems Biology Lab at Rice, but he has spent most of his working hours on REMOTE since joining ARPA-E 18 months ago. As program director, he and his team formulated a vision for REMOTE and created a road map to develop GTL technologies with high energy efficiency and a low carbon footprint. A successful program, he said, will support natural gas bioconversion facilities with low capital cost and at small scales, which in turn would enable the use of any  resource, including those frequently flared, vented or emitted.
He said he hopes to fulfill the agency's mission by promoting revolutionary advances in both fundamental and applied sciences. "The development cycle for a truly new, transformative technology in the energy domain takes anywhere from five to 15 years to develop," Gonzalez said. "I would say the five-year time frame is optimistic, but I think by the end of this decade, technologies like the ones we're promoting with REMOTE should be in place."
One essential element is already in place: the infrastructure for delivering and using liquid fuel. Ideally, consumers would see no difference in the way they fill and run their cars. "I would be really happy if we could see something commercialized by the end of this decade," Gonzalez said.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...