Skip to main content

The role of synthetic biology in conversion of natural gas into clean fuel

(Phys.org) —Rice University synthetic biologist Ramon Gonzalez sees a future – a near future, in fact – in which Americans get enough clean transportation fuel from natural gas to help make the nation energy independent.

As a program director with the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E), he's in a position to help make it happen.
In an article in this week's Science magazine, Gonzalez, an associate professor of chemical and biomolecular engineering, discusses his vision for the development of revolutionary bioconversion technologies for the production of liquid transportation fuels from natural gas. This vision is the basis for a program, Reducing Emissions Using Methanotrophic Organisms for Transportation Energy (REMOTE), developed by Gonzalez and his team at ARPA-E. The program currently supports 15 teams with a budget of approximately $35 million.
He and co-author Robert Conrado, a former senior fellow at ARPA-E, detailed the barriers that must be overcome for the United States to turn the methane-rich natural gas it produces in great abundance into fuel that remains liquid at room temperature – basically, a clean-burning, low-cost gasoline equivalent.
Gonzalez is in the first year of the agency's three-year commitment to create natural gas bioconversion technologies through REMOTE. "Our goal is to come up with things that are not on anyone's radar, completely new approaches that are transformational in nature," he said. "Natural gas is one of the most-abundant resources in the world, but until now the U.S. had invested very little in natural gas bioconversion research."
The United States produces more natural gas than any other country, but converting it to  without throwing away most of the  it contains is expensive, Gonzalez said. "The gas-to-liquids (GTL) technologies that exist today can only support technologically complex, multistep processes that need to operate at large scale, which means multimillion-dollar investments in each facility. It's probably economically viable today because natural gas is so cheap, but it's bad in terms of energy efficiency and emissions."
While bioconversion offers a potential solution to the large-scale, capital-intensive nature of the GTL approach, implementation of today's bioconversion technologies would lead to "wasting half of the energy and one-third of the carbon in methane during conversion to a liquid fuel and hence a huge carbon footprint," he said. "And when natural gas goes up in price, it won't be economically viable anymore."

REMOTE's goal is to solve both problems by getting the most energy out of natural gas with the least energy input. The key, Gonzalez said, is to engineer enzymes that efficiently "activate" carbon-hydrogen bonds in methane, the first step toward conversion. That involves the manipulation of microbial cells that alter materials at the molecular level.
"People have been trying really hard to do it for decades," he said. "I think it's going to happen within the life of the program – that is, within the first three years."
Next, he said, researchers will need an efficient way to convert activated, intermediate methane into liquid fuel in concert with the development of high-productivity bioreactors.
Gonzalez remains in charge of his Metabolic Engineering and Synthetic and Systems Biology Lab at Rice, but he has spent most of his working hours on REMOTE since joining ARPA-E 18 months ago. As program director, he and his team formulated a vision for REMOTE and created a road map to develop GTL technologies with high energy efficiency and a low carbon footprint. A successful program, he said, will support natural gas bioconversion facilities with low capital cost and at small scales, which in turn would enable the use of any  resource, including those frequently flared, vented or emitted.
He said he hopes to fulfill the agency's mission by promoting revolutionary advances in both fundamental and applied sciences. "The development cycle for a truly new, transformative technology in the energy domain takes anywhere from five to 15 years to develop," Gonzalez said. "I would say the five-year time frame is optimistic, but I think by the end of this decade, technologies like the ones we're promoting with REMOTE should be in place."
One essential element is already in place: the infrastructure for delivering and using liquid fuel. Ideally, consumers would see no difference in the way they fill and run their cars. "I would be really happy if we could see something commercialized by the end of this decade," Gonzalez said.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

Scientists solve puzzle of turning graphite into diamond

Stochastic surface walking simulations can explain why graphite turns into hexagonal, not cubic, diamond under pressures of 5-20 gigapascals. Credit: Xie et al. ©2017 American Chemical Society Researchers have finally answered a question that has eluded scientists for years: when exposed to moderately high pressures, why does graphite turn into hexagonal diamond (also called lonsdaleite) and not the more familiar cubic diamond, as predicted by theory? The answer largely comes down to a matter of speed—or in chemistry terms, the reaction kinetics. Using a brand new type of simulation, the researchers identified the lowest-energy pathways in the graphite-to-diamond transition and found that the transition to hexagonal diamond is about 40 times faster than the transition to cubic diamond. Even when cubic diamond does begin to form, a large amount of hexagonal diamond is still mixed in. The researchers, Yao-Ping Xie, Xiao-Jie Zhang, and Zhi-Pan Liu at Fudan University and S...