Skip to main content

Researchers create stable 2-D electron gas in strontium titanate, open door to new kind of electronics

Electronics based on a 2-D electron gas
This shows the atomic structure of SrTiO3(110). Credit: Vienna University of Technology
Usually, microelectronic devices are made of silicon or similar semiconductors. Recently, the electronic properties of metal oxides have become quite interesting. These materials are more complex, yet offer a broader range of possibilities to tune their properties. An important breakthrough has now been achieved at the Vienna University of Technology: a two dimensional electron gas was created in strontium titanate. In a thin layer just below the surface electrons can move freely and occupy different quantum states.
Strontium titanate is not only a potential future alternative to standard semiconductors, it could also exhibit interesting phenomena, such as superconductivity, thermoelectricity or magnetic effects that do not occur in the  that are used for today's electronic devices.
The Surface Layer and the Inside
This project closely links theoretical calculations and experiments. Zhiming Wang from Professor Ulrike Diebold's research team was the leading experimentalist; some of the experimental work was done at the synchrotron BESSY in Berlin. Zhicheng Zhong from Professor Karsten Held's group studied the material in computer simulations.
Not all of the atoms of  are arranged in the same pattern: if the material is cut at a certain angle, the atoms of the  layer form a structure, which is different from the structure in the bulk of the material. "Inside, every titanium atom has six neighbouring , whereas the titanium atoms at the surface are only connected to four oxygen atoms each", says Ulrike Diebold. This is the reason for the remarkable chemical stability of the surface. Normally such materials are damaged if they come into contact with water or oxygen.
Electronics based on a 2-D electron gas
This shows a strontium titanate crystal in the vacuum chamber. Credit: Vienna University of Technology
Migrating Oxygen Atoms
Something remarkable happens when the material is irradiated with high-energy electromagnetic waves: "The radiation can remove oxygen atoms from the surface", Ulrike Diebold explains. Then other oxygen atoms from within the bulk of the material move up to the surface. Inside the material, an oxygen deficiency builds up, as well a surplus of electrons.
"These electrons, located in a two dimensional layer very close to the surface, can move freely. We call this an ", says Karsten Held. There has already been some evidence of two dimensional electron gases in similar materials, but until now the creation of a stable, durable electron gas at a surface has been impossible. The properties of the electrons in the gas can be finely tuned. Depending on the intensity of the radiation, the number of electrons varies. By adding different atoms, the  can also be changed.
"In solid state physics, the so-called band structure of a material is very important. It describes the relationship between the energy and the momentum of the electrons. The remarkable thing about our surface is that it shows completely different kinds of band structures, depending on the quantum state of the electron", says Karsten Held.
The electron gas in the new material exhibits a multitude of different electronic structures. Some of them could very well be suitable for producing interesting magnetic effects or superconductivity. The promising properties of strontium titanate will now be further investigated. The researchers hope that, by applying external electric fields or by placing additional metal atoms on the surface, the new material could reveal a few more of its secrets.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

Where the Swastika Was Found 12,000 Years Before Hitler Made Us Uncomfortable About I

Minoan pottery from Crete. The Minoan civilization flourished from 3,000 to 1,100 B.C. (Agon S. Buchholz/Wikimedia Commons) ) Swastika from a 2nd century A.D. Roman mosaic. (Maciej Szczepańczyk/Wikimedia Commons A srivatsa (swastika) sign at Nata-dera Temple, Japan. (Cindy Drukier/Epoch Times) From the Sican/Lambayeque civilization in Peru, which flourished 750 to 1375 A.D. (Wikimedia Commons) Ancient Macedonian helmet with swastika marks, 350-325 B.C., found at Herculanum. (Cabinet des Medailles, Paris/Wikimedia Commons) A Buddha statue on Lantau Island, Hong Kong with a swastika symbol on the chest. (Shutterstock*) A 3,000-year-old necklace found in the Rasht Province of Iran. (Wikimedia Commons) The aviator Matilde Moisant(1878-1964) wearing a swastika medallion in 1912; the symbol was popular as a good luck charm with early aviators. (Wikimedia Commons) A mandala-like swastika, composed of Hebrew letters and surrounded by a circle and a mystica...

Scientists solve puzzle of turning graphite into diamond

Stochastic surface walking simulations can explain why graphite turns into hexagonal, not cubic, diamond under pressures of 5-20 gigapascals. Credit: Xie et al. ©2017 American Chemical Society Researchers have finally answered a question that has eluded scientists for years: when exposed to moderately high pressures, why does graphite turn into hexagonal diamond (also called lonsdaleite) and not the more familiar cubic diamond, as predicted by theory? The answer largely comes down to a matter of speed—or in chemistry terms, the reaction kinetics. Using a brand new type of simulation, the researchers identified the lowest-energy pathways in the graphite-to-diamond transition and found that the transition to hexagonal diamond is about 40 times faster than the transition to cubic diamond. Even when cubic diamond does begin to form, a large amount of hexagonal diamond is still mixed in. The researchers, Yao-Ping Xie, Xiao-Jie Zhang, and Zhi-Pan Liu at Fudan University and S...