Skip to main content

Tuning Ductility

Fusion reactors and turbine engines contain components made of metals that are ductile at high temperatures but become brittle and prone to cracking at room temperature. This brittleness can lead to machine failures that are both dangerous and expensive to fix. New theoretical calculations now show that an unexpected route to making certain alloyed metals more ductile at room temperature is to tune their density of conduction electrons.
A brittle metal tends to crack under an applied force, while ductile metals incur a permanent stretch. Which property dominates depends both on the intrinsic crystalline arrangement of the atoms and the presence of defects: brittle materials tend to keep their crystalline symmetry until the moment that they fail; ductile materials instead change from one type of crystalline symmetry to another before structural failure.
Liang Qi and Daryl Chrzan at the University of California, Berkeley, conducted quantum-mechanical modeling of defect-free metals to study how electronic structure affects the brittleness or ductility of certain alloys—specifically those with degenerate electron energy levels. As they report in Physical Review Letters, Qi and Chrzan found that as the Fermi level of the alloy passes through the degenerate energy levels, the crystalline structure distorts and the energy levels split as a result of the distortion. Since symmetry breaking is associated with ductility, tweaking an alloy’s composition so as to shift the density of conduction electrons—and hence the Fermi level—is a way to engineer substances that are ductile at room temperature. As a proof of principle, the authors showed (with calculations) that their strategy works for molybdenum-niobium, an alloy currently being considered for nuclear fuel rods. – Katherine Kornei

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...