Skip to main content

Tuning Ductility

Fusion reactors and turbine engines contain components made of metals that are ductile at high temperatures but become brittle and prone to cracking at room temperature. This brittleness can lead to machine failures that are both dangerous and expensive to fix. New theoretical calculations now show that an unexpected route to making certain alloyed metals more ductile at room temperature is to tune their density of conduction electrons.
A brittle metal tends to crack under an applied force, while ductile metals incur a permanent stretch. Which property dominates depends both on the intrinsic crystalline arrangement of the atoms and the presence of defects: brittle materials tend to keep their crystalline symmetry until the moment that they fail; ductile materials instead change from one type of crystalline symmetry to another before structural failure.
Liang Qi and Daryl Chrzan at the University of California, Berkeley, conducted quantum-mechanical modeling of defect-free metals to study how electronic structure affects the brittleness or ductility of certain alloys—specifically those with degenerate electron energy levels. As they report in Physical Review Letters, Qi and Chrzan found that as the Fermi level of the alloy passes through the degenerate energy levels, the crystalline structure distorts and the energy levels split as a result of the distortion. Since symmetry breaking is associated with ductility, tweaking an alloy’s composition so as to shift the density of conduction electrons—and hence the Fermi level—is a way to engineer substances that are ductile at room temperature. As a proof of principle, the authors showed (with calculations) that their strategy works for molybdenum-niobium, an alloy currently being considered for nuclear fuel rods. – Katherine Kornei

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...