Skip to main content

GE to take next leap in magnetocaloric refrigeration (w/ video)



Lead Engineer Michael Benedict (left) and Venkat Venkatakrishnan (right), Director of Advanced Technologies, work in GE Appliances' labs on magnetocaloric refrigeration technology that can replace traditional compressors used in refrigerators for the last 100 years. Credit: GE
(Phys.org) —Before the microwave gained fame as a kitchen wonder, there was the, gasp, refrigerator, a kitchen wonder that could freeze meat and keep ice cream from melting on top, while preserving the life of leftovers and milk, juice and eggs below. For Americans, GE became an entrenched brand name in owning the modern fridge. Now GE wants to write the second chapter in home refrigeration. This week GE announced its research focus on magnetic (magnetocaloric) refrigeration, which uses no refrigerants or compressors and is 20 percent more efficient than what is used today. The technique involves the use of a water-based fluid and magnets. Rotating magnets change the magnetic field back and forth and pump water-based cooling fluid between the cold side to the hot side.

"This is a big deal," said Venkat Venkatakrishnan, a leader of the research team. "We are on the cusp of the next  revolution." GE said the technology could be at work inside the fridge by the end of the decade; the company expects to commercialize their magnetic refrigeration technology by 2020.
One key benefit being touted is efficiency. In figuring out how to create the cold without chemical refrigerants or compression, Venkatakrishnan said the technology carries greater efficiency. Also, "because the technology does not contain traditional refrigerants, recycling refrigerators at end of life will be easier and less costly."
Specifically, the system uses a water-based fluid rather than a chemical refrigerant such as Freon to transfer heat from inside the refrigerator and achieve the cooling process. In place of the compressor, magnets create a , said a GE report, that "agitates particles in the fluid causing it to cool. The strength of the magnetic fields determines how cold the fluid becomes, and in turn, how quickly it cools the refrigerator."
http://phys.org/news/2014-03-ge-magnetocaloric-refrigeration-video.html
Michael Benedict, Lead Engineer for GE Appliances' magnetocaloric project, explains how the technology will be used to keep refrigerators cool in the near future
(Their technology takes advantage of an old discovery, the magnetocaloric effect. In the 1880s, German physicist Emil Warburg observed that certain metals would heat up near magnets and cool down when taken away.)
The team's materials scientists developed a type of nickel-manganese alloys for magnets that function at room temperatures. Engineers arranged the magnets in a series of 50 cooling stages. Today they are capable of reducing temperature by 80 degrees. The team aims to achieve a 100-degree drop in temperature at low power."We are focusing on magnetic refrigeration as a potential replacement for all the refrigeration technologies currently in use," said Michael Benedict, lead engineer for GE Appliances' magnetocaloric project.
According to GE, the technology can be applied to other heat pump applications such as HVAC and has the potential to impact nearly 60 percent of the average US household's energy consumption.

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in