Skip to main content

Semiconductor material can be magnetized with light, suggesting new technology opportunities

Semiconductor material can be magnetized with light, suggesting new technology opportunities
Los Alamos postdoctoral fellow William Rice holds a crystal of strontium titanate up to the light. This crystal, previously thought to be nonmagnetic, turns out to have surprising magnetic features when treated with special “circularly polarized” light.
(Phys.org) —Interest in oxide-based semiconductor electronics has exploded in recent years, fueled largely by the ability to grow atomically precise layers of various oxide materials. One of the most important materials in this burgeoning field is strontium titanate (SrTiO3), a nominally nonmagnetic wide-bandgap semiconductor, and researchers at Los Alamos National Laboratory have found a way to magnetize this material using light, an effect that persists for hours at a time.
"One doesn't normally think of this material as being able to support magnetism. It's supposed to be useful – but magnetically uninteresting – stuff. So when we started shining  on it and saw what appeared to be extremely long-lived magnetic signals – that persisted for hours even after we turned the light off – it came as quite a surprise," said Scott Crooker, lead scientist on the project at Los Alamos.
Studies of 's electrical and optical properties abound, it's not a new material – in fact it was marketed in the 1950s and '60s as a "faux diamond" product before cubic zirconium gained popularity. Though often used in industry for its robust dielectric properties, its potential  were less well understood. A renewed interest in SrTiO3 was recently sparked by observations of an unexpected and emergent magnetization in strontium titanate-based structures.
"There've been tantalizing hints in recent years that there might be more to SrTiO3 than originally thought. When layered with other 'nominally non-magnetic' oxides, a handful of recent experiments around the world have shown not only superconductivity but also an unexpected magnetism. So that piqued our interest in this material," Crooker said.
"This is really something completely new in  like these - the ability to write permanent magnetic patterns into an otherwise non-magnetic material. The challenge will be to properly understand how and why this works, and to increase the temperature at which it can be done. The exciting possibility is to potentially use this to store data in some way," said collaborator Chris Leighton of the University of Minnesota.
In a paper published this week in Nature Materials, Crooker and collaborators illustrated a new aspect to the nature of magnetism in strontium titanate, reporting the observation of an optically induced and persistent magnetization in crystals of SrTiO3 when they are slightly oxygen-deficient.
Using samples prepared by collaborators in Leighton's group, Crooker and Los Alamos colleagues William Rice and Joe Thompson used magnetic circular dichroism spectroscopy and also SQUID magnetometry to show that circularly polarized light can induce an extremely long-lived magnetic moment in SrTiO3 at zero applied magnetic field.
These signals appear below 18 Kelvin, persist for hours below 10 K, and can be controlled in both magnitude and sign via the circular polarization and wavelength of blue/green light in the range spanning 400-500 nm. As such,  patterns can be "written" into SrTiO3, and subsequently read out, using light alone. These effects occur only in crystals containing oxygen vacancies, revealing a detailed interplay between magnetism, lattice defects and light in an archetypal complex oxide material.
More information: "Persistent Optically Induced Magnetism in Oxygen-Deficient Strontium Titanate" W.D. Rice, P. Ambwani, M. Bombeck, J. D. Thompson, G. Haugstad, C. Leighton, and S. A. Crooker, accepted and in press, Nature Materials (2014). www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3914.html

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in