Skip to main content

Physicists pin down the proton-halo state in Flourine-17

A halo nucleus has one or more nucleons that are only weakly bound to the nuclear core. Consequently, they drift far away from it, forming, in effect, a halo. These nuclei are difficult to study because their lives are both short and fragile. The more tools scientists have to calculate the properties of nuclei, the more clearly they can investigate the limits of nuclear existence.
A halo may be difficult to acquire in terms of virtue, but it can also be tough to calculate in terms of physics. Thomas Papenbrock, associate professor of physics and astronomy at the University of Tennessee, Knoxville, and his colleagues Gaute Hagen from Oak Ridge National Laboratory and Morten Hjorth-Jensen from the University of Oslo have managed to do just that, however, and report their findings in "Ab-initio computation of the 17F proton-halo state and resonances in A = 17 nuclei," published earlier this month in .
A halo nucleus differs from the more traditional nuclei because it has one or more nucleons ( or neutrons) that are only weakly bound to the nuclear core. Consequently, they drift far away from it, forming, in effect, a halo. These nuclei are difficult to study because their lives are both short (often lasting only milliseconds) and fragile. Halo nuclei appear at the limits of nuclear existence, very near a place called the dripline. This is the perilous territory where the number of protons and the number of neutrons are plotted against each other and one too many of either means the nucleus will not hold together. Halo nuclei also come with a large number of degrees of freedom—independent configurations required to explain how a system is built.
Hagen, Hjorth-Jensen and Papenbrock set out to study flourine-17, a "mirror nucleus" of oxygen-17. Each of these isotopes has an atomic number of 17, but with their protons and neutrons in flipped numbers (flourine-17 has 9 protons and 8 neutrons, while oxygen-17 has 8 protons and 9 neutrons). Part of what makes these nuclei interesting is that they are neighbors of the most abundant and stable isotope of oxygen: oxygen-16. They determine its proton and neutron energies, which are the basic ingredients of the nuclear shell model—the way protons and  are arranged in a nucleus—and are also key to understanding the shell structure in fluorine and oxygen . Flourine-17, in particular, has a "halo" formed by an excited proton orbiting far away from the oxygen-16 core that plays an important role in nucleosynthesis, the stellar processes that generate the elements that surround us.
The UTK-ORNL-Oslo team used sophisticated methods to work with the 17 interacting particles in this isotope to better understand it. This is called a many-body problem, meaning that whenever there are more than two bodies interacting with one another, it is difficult to pin down precise calculations of the system. Starting at the beginning (or ab initio, in Latin) the team began with a nuclear Hamiltonian, the operator that describes the energy of a system in terms of its momentum and positional coordinates. They also used the coupled-cluster method — a numerical technique that solves such quantum many-body problems — and ORNL's supercomputer Jaguar to successfully complete first-principle calculations of the proton halo state in Fluorine-17. The calculations contain no adjustable parameters and show a computed binding energy (what holds the nucleus together) that closely reflects experimental data.
The more tools scientists have to calculate the properties of nuclei—how long they live, what holds them together, and how they decay—the more clearly they can investigate the limits of nuclear existence, understand phenomenological models of the , and predict nuclear properties in applied fields like nuclear medicine or stockpile stewardship.

Comments

Popular posts from this blog

Einstein’s Lost Theory Describes a Universe Without a Big Bang

Einstein with Edwin Hubble, in 1931, at the Mount Wilson Observatory in California, looking through the lens of the 100-inch telescope through which Hubble discovered the expansion of the universe in 1929.  Courtesy of the Archives, Calif Inst of Technology. In 1917, a year after Albert Einstein’s  general theory of relativity  was published—but still two years before he would become the international celebrity we know—Einstein chose to tackle the  entire universe . For anyone else, this might seem an exceedingly ambitious task—but this was Einstein. Einstein began by applying his  field equations of gravitation  to what he considered to be the entire universe. The field equations were the mathematical essence of his general theory of relativity, which extended Newton’s theory of gravity  to realms where speeds approach that of light and masses are very large. But his math was better than he wanted to believe—...

There’s a Previously Undiscovered Organ in Your Body, And It Could Explain How Cancer Spreads

Ever heard of the interstitium? No? That’s OK, you’re not alone  —  scientists hadn’t either. Until recently. And, hey, guess what  —  you’ve got one! The interstitium is your newest organ. Scientists identified it for the first time because they are better able to observe living tissues at a microscopic scale, according to a recent study published  in  Scientific Reports , Scientists had long believed that connective tissue surrounding our organs was a thick, compact layer. That’s what they saw when they looked at it in the lab, outside the body, at least. But in a routine endoscopy (exploration of the gastrointestinal tract), a micro camera revealed something unexpected: When observed in a living body, the connective tissue turned out to be “an open, fluid-filled space supported by a lattice made of thick collagen bundles,” pathologist and study author Neil Theise  told  Research Gate . This network of channels is present throughout ...

First light-bending calculator designed with metamaterials

Exotic materials that bend light in extreme ways could be used to perform complex mathematical operations, creating a new kind of analogue computer. Tools for manipulating light waves have taken off in recent years thanks to the development of  metamaterials . These materials have complex internal structures on scales smaller than the wavelength of the light they interact with, and so they produce unusual effects. Most famously, metamaterials promise to deliver " invisibility cloaks " that can route light around an object, making it seem to disappear. Nader Engheta  at the University of Pennsylvania, Philadelphia, and his colleagues decided to explore a different use for metamaterials, one that adapts the  old idea of analogue computing . Today's digital computers are based on electrical switches that are either on or off. But before these machines were analogue computers based on varying electrical or mechanical properties. The  slide rule  is one example...