Skip to main content

'Photon glue' enables a new quantum mechanical state

'Photon glue' enables a new quantum mechanical state
In an optical cavity -- a filament lined with mirrors -- researchers have used light to bind together quantum mechanical states of two disparate materials. The result could one day enable more robust, efficient solar cells and lighting solutions. Credit: Tal Galfsky, CUNY
Like a spring connecting two swings, light can act as photon glue that binds together the quantum mechanical properties of two vastly different materials.
The effect could harness the most useful characteristics from each material for hybrid  and high efficiency lighting, among other applications.
Researchers at the University of Michigan and Queens College, City University of New York, used light to create links between organic and inorganic semiconductors in an —a mirror-lined nanoscale filament about 1/1,000th the width of a hair.
Semiconductors are  whose electrical conductivity can be adjusted by adding impurities, known as dopant atoms. They're used in all electronic devices, including cell phones and laptops, and also in solar cells and light-emitting diodes.
Organic semiconductors are made of carbon-rich compounds that don't necessarily come from biological sources, but resemble them. They are newer to the market than their inorganic counterparts such as silicon. But they are finding widespread applications in smart phone displays and room lighting. Organics hold promise to be flexible and inexpensive, perhaps even deployed on large plastic rolls.
"What we've done is taken the excited states of two principally different materials and combined them into a new quantum mechanical state that shares their best properties," said Stephen Forrest, professor of physics and materials science and also the William Gould Dow Collegiate Professor of Electrical Engineering.
This new state demonstrates stronger light absorption and possibly enhanced "nonlinear" optical properties useful in optical switching, said Vinod Menon, associate professor of physics at Queens College.
"Developing engineered nonlinear optical materials with properties that surpass naturally occurring materials is important for developing next generation photonic technologies that rely on the quantum properties of light," Menon said. "For example, one could develop an optical switch that uses one photon to turn on or off the path of a second photon. This is basically a light switch that regulates light, one photon at a time—an important building block for quantum communication and computing."

To demonstrate the effect, the researchers started with an inorganic semiconductor—zinc oxide—and made it into nanowires. Then they surrounded it with an organic material—naphthalene tetracarboxylic dianhydride, or NTCDA.
"We chose these two materials because their excited states would be at nearly the same energies. That is, they are in resonance with one another. And we then sandwiched them between two mirrors to form an optical cavity that traps photons, also at the same energy as the excited states," Forrest said.
"The result was a third, unique quantum state that is a combination of the photon, the  of the inorganic semiconductor and the excited state in the organic semiconductor. That sounds hard and it is."
He likened the construction to two swings connected by a spring. The swings in this case are excitons, or electronically attractive electron-hole pairs. An electron is a negatively charged subatomic particle and a "hole" in this context is the absence of an electron. In a semiconducting material, a hole carries a positive charge.
In the optical cavity, the photon essentially "glues" together all these quantum mechanical states, forming a unique and potentially useful new state called a polariton that can efficiently transfer energy from one material to another, Forrest said.
"In that new state lies their magic," he said. "Uses in solar energy conversion,  emission and optical switching are just a few examples of applications that can benefit.
More information: Michael Slootsky, Xiaoze Liu, Vinod M. Menon, and Stephen R. Forrest. "Room Temperature Frenkel-Wannier-Mott Hybridization of Degenerate Excitons in a Strongly Coupled Microcavity." Phys. Rev. Lett. 112, 076401 – Published 18 February 2014


Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allowing groundwater to come inside the

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors than usual were placed in