Skip to main content

Nanostructures enhance light trapping for solar fuel generation

Nanostructures enhance light trapping for solar fuel generation
Illustration of a hematite photoelectrode consisting of a periodic nanobeam-array (red) on a conductive ITO layer (dark blue). The nanobeam structure boosts the absorption of sunlight at the hematite/H2O interface, resulting in more efficient …more
As the world's dependence on fossil fuels causes ever-increasing problems, researchers are investigating solar fuels as an alternative energy source. To make solar fuels, sunlight is converted into hydrogen or another type of chemical energy. Compared to energy produced by solar cells, which convert sunlight directly to electricity, solar fuels such as hydrogen have the advantage of being easier to store for later use.
Because of the enormous amount of sunlight that reaches Earth, solar fuel generation has the potential to serve as a clean, terawatt-scale global energy source. But in order for this to happen, the photocatalysts that enhance  and light trapping must be improved, both in terms of higher performance and lower cost.
In a new study, researchers Soo Jin Kim, et al., at the Geballe Laboratory for Advanced Materials in Stanford, California, have demonstrated that photocatalysts made from iron oxide exhibit substantial performance improvements when they are patterned with nanostructures. Their paper is published in a recent issue of Nano Letters.
"I think the most significant advance is that the work will provide valuable guidelines for the design of new, nanostructured photocatalyst materials capable of effectively absorbing light and driving catalytic reactions," Professor Mark L. Brongersma at Stanford told Phys.org. "Hopefully, it will stimulate more research on photon management for photocatalyst materials. The use of photon managements in solar fuel generation is lagging behind strongly with respect to development of photon management strategies for ."
As the researchers explain,  in the hematite phase (Fe2O3) is an earth-abundant semiconductor with a bandgap energy of 590 nm, which is considered close to optimal for water splitting and hydrogen production. Because it absorbs photons across a relatively large portion of the , it outperforms other catalyst materials that absorb smaller portions of the solar spectrum.
Despite these advantages, hematite has a weakness: it cannot absorb photons near its surface, which results in many of the photoexcited carriers recombining rather than participating in chemical reactions to produce hydrogen. This problem occurs due to a mismatch between hematite's very short (nanometer scale) carrier diffusion length compared to the absorption depth of light (micrometer scale near the surface). So even though the photons are present, they cannot be effectively used.
Previous research has attempted to address this problem by adding metal nanostructures to enhance light absorption in the near-surface region of the photocatalysts. However, this approach suffers from intrinsic optical losses in the metal.
In the current study, the researchers have circumvented this problem of optical loss by nanopatterning the hematite photocatalysts themselves. The nanostructures allow the photocatalyst to overcome the detrimental mismatch between the carrier diffusion and photonic absorption length scales, and redistribute the photons to the near-surface region.
Nanostructuring's benefits come from the fact that it allows sunlight to drive optical resonances in the hematite, resulting in an enhancement of both light absorption and light scattering. By engineering the size, shape, spacing, and dielectric environment of the nanostructures, the researchers could optimize and tune the resonant wavelengths across the solar spectrum.
This strategy of nanostructuring a photocatalyst could be extended to other photocatalyst materials. As nanopatterning techniques continue to become used more often in many different areas, it is likely that nanostructured arrays can be made inexpensively over large areas.
"Next, we are going to employ metamaterials concepts in our  materials," Brongersma said. "We will see where it takes us!"
More information: Soo Jin Kim, et al. "Light Trapping for Solar Fuel Generation with Mie Resonances." Nano LettersDOI: 10.1021/nl404575e

Comments

Popular posts from this blog

This strange mineral grows on dead bodies and turns them blue

If you were to get up close and personal with Ötzi the Iceman – the 5,000-year-old mummy of a  tattooed ,  deep-voiced  man who died and was frozen in the Alps – you’d notice that his skin is flecked with tiny bits of blue. At first, it would appear that these oddly bluish crystal formations embedded in his skin are from freezing to death or some other sort of trauma, but it’s actually a mineral called  vivianite  (or blue ironstone) and it happens to form quite often on corpses left in iron-rich environments. For Ötzi, the patches of vivianite are  from him resting  near rocks with flecks of iron in them, but other cases are way more severe. According to Chris Drudge at Atlas Obscura , a man named John White was buried in a cast iron coffin back in 1861. During those days, coffins often had a window for grieving family members to peer inside even if the lid was closed during the funeral. Sometime after he was buried, that window broke, allow...

It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them

Peer-review has spoken. Earlier this year , physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy. Two separate research teams managed to create what looked an awful lot like time crystals  back in January,  and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory,"  says one of the researchers , Andrew Potter from Texas University at Austin. "Hopefully, this is just the first example of these, with many more to come." Time crystals  are one of the coolest things physics has dished up in recent months, because they point to a...

The Dark Side Of The Love Hormone Oxytocin

New research shows oxytocin isn't the anti-anxiety drug we thought it was. Oxytocin, the feel-good bonding hormone released by physical contact with another person, orgasm and childbirth (potentially encouraging  monogamy ), might have a darker side. The  love drug  also plays an important role in intensifying  negative emotional memories  and increasing feelings of fear in future stressful situations, according to a new study. Two experiments performed with mice found that the hormone activates a signaling molecule called extracellular-signal-related kinases (ERK), which has been associated with the way the brain  forms memories   of fear . According to Jelena Radulovic, senior author on the study and a professor at Northwestern University's medical school, ERK stimulates fear pathways in the brain's lateral septum, the region with the highest levels of oxytocin. Mice without oxytocin receptors and mice with even more oxytocin receptors tha...